
Aug 09 2024

Intelligence Report
InfoStealer Uses SwiftUI,
OpenDirectory API to
Capture Passwords

 N/A

 N/A

 N/A

 N/A

 info@netmanageit.com

 https://www.netmanageit.com

1

4

4

5

6

14

16

17

21

22

25

Table of contents

Overview

• Description

• Confidence

• Content

Entities

• Attack-Pattern

• Indicator

• Malware

• indicates

• based-on

• uses

Observables

• StixFile

TLP:CLEAR

2 Table of contents

26

27

28

• IPv4-Addr

• Url

External References

• External References

TLP:CLEAR

3 Table of contents

Overview

Description

This report analyzes a new macOS stealer malware that leverages SwiftUI for password prompts

and the OpenDirectory API for verifying captured passwords. It utilizes APIs to evade detection

and carries out malicious operations in distinct stages, first executing a Swift-based dropper

that displays a fake password prompt to trick users, verifies credentials using the OpenDirectory

API, and then downloads and executes malicious scripts from a command-and-control server.

The analysis delves into the dropper's functionality, uncovering novel techniques employed by

the malware authors.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

100 / 100

TLP:CLEAR

4 Overview

Content

N/A

TLP:CLEAR

5 Content

Attack-Pattern

Name

T1558.001

ID

T1558.001

Description

Adversaries who have the KRBTGT account password hash may forge Kerberos ticket-

granting tickets (TGT), also known as a golden ticket.(Citation: AdSecurity Kerberos GT Aug

2015) Golden tickets enable adversaries to generate authentication material for any

account in Active Directory.(Citation: CERT-EU Golden Ticket Protection) Using a golden

ticket, adversaries are then able to request ticket granting service (TGS) tickets, which

enable access to specific resources. Golden tickets require adversaries to interact with the

Key Distribution Center (KDC) in order to obtain TGS.(Citation: ADSecurity Detecting Forged

Tickets) The KDC service runs all on domain controllers that are part of an Active Directory

domain. KRBTGT is the Kerberos Key Distribution Center (KDC) service account and is

responsible for encrypting and signing all Kerberos tickets.(Citation: ADSecurity Kerberos

and KRBTGT) The KRBTGT password hash may be obtained using [OS Credential Dumping]

(https://attack.mitre.org/techniques/T1003) and privileged access to a domain controller.

Name

T1055.001

ID

TLP:CLEAR

6 Attack-Pattern

T1055.001

Description

Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade

process-based defenses as well as possibly elevate privileges. DLL injection is a method of

executing arbitrary code in the address space of a separate live process. DLL injection is

commonly performed by writing the path to a DLL in the virtual address space of the

target process before loading the DLL by invoking a new thread. The write can be

performed with native Windows API calls such as `VirtualAllocEx` and

`WriteProcessMemory`, then invoked with `CreateRemoteThread` (which calls the

`LoadLibrary` API responsible for loading the DLL). (Citation: Elastic Process Injection July

2017) Variations of this method such as reflective DLL injection (writing a self-mapping DLL

into a process) and memory module (map DLL when writing into process) overcome the

address relocation issue as well as the additional APIs to invoke execution (since these

methods load and execute the files in memory by manually preforming the function of

`LoadLibrary`).(Citation: Elastic HuntingNMemory June 2017)(Citation: Elastic Process

Injection July 2017) Another variation of this method, often referred to as Module

Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within

a process. This method involves loading a legitimate DLL into a remote process then

manually overwriting the module's `AddressOfEntryPoint` before starting a new thread in

the target process.(Citation: Module Stomping for Shellcode Injection) This variation allows

attackers to hide malicious injected code by potentially backing its execution with a

legitimate DLL file on disk.(Citation: Hiding Malicious Code with Module Stomping) Running

code in the context of another process may allow access to the process's memory, system/

network resources, and possibly elevated privileges. Execution via DLL injection may also

evade detection from security products since the execution is masked under a legitimate

process.

Name

T1548.001

ID

T1548.001

Description

TLP:CLEAR

7 Attack-Pattern

An adversary may abuse configurations where an application has the setuid or setgid bits

set in order to get code running in a different (and possibly more privileged) user’s

context. On Linux or macOS, when the setuid or setgid bits are set for an application

binary, the application will run with the privileges of the owning user or group

respectively.(Citation: setuid man page) Normally an application is run in the current

user’s context, regardless of which user or group owns the application. However, there are

instances where programs need to be executed in an elevated context to function

properly, but the user running them may not have the specific required privileges. Instead

of creating an entry in the sudoers file, which must be done by root, any user can specify

the setuid or setgid flag to be set for their own applications (i.e. [Linux and Mac File and

Directory Permissions Modification](https://attack.mitre.org/techniques/T1222/002)). The

`chmod` command can set these bits with bitmasking, `chmod 4777 [file]` or via shorthand

naming, `chmod u+s [file]`. This will enable the setuid bit. To enable the setgid bit, `chmod

2775` and `chmod g+s` can be used. Adversaries can use this mechanism on their own

malware to make sure they're able to execute in elevated contexts in the future.(Citation:

OSX Keydnap malware) This abuse is often part of a "shell escape" or other actions to

bypass an execution environment with restricted permissions. Alternatively, adversaries

may choose to find and target vulnerable binaries with the setuid or setgid bits already

enabled (i.e. [File and Directory Discovery](https://attack.mitre.org/techniques/T1083)). The

setuid and setguid bits are indicated with an "s" instead of an "x" when viewing a file's

attributes via `ls -l`. The `find` command can also be used to search for such files. For

example, `find / -perm +4000 2>/dev/null` can be used to find files with setuid set and

`find / -perm +2000 2>/dev/null` may be used for setgid. Binaries that have these bits set

may then be abused by adversaries.(Citation: GTFOBins Suid)

Name

T1071.001

ID

T1071.001

Description

Adversaries may communicate using application layer protocols associated with web traffic

to avoid detection/network filtering by blending in with existing traffic. Commands to the

remote system, and often the results of those commands, will be embedded within the

protocol traffic between the client and server. Protocols such as HTTP/S(Citation:

CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web

TLP:CLEAR

8 Attack-Pattern

traffic may be very common in environments. HTTP/S packets have many fields and

headers in which data can be concealed. An adversary may abuse these protocols to

communicate with systems under their control within a victim network while also

mimicking normal, expected traffic.

Name

T1059.001

ID

T1059.001

Description

Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a

powerful interactive command-line interface and scripting environment included in the

Windows operating system.(Citation: TechNet PowerShell) Adversaries can use PowerShell

to perform a number of actions, including discovery of information and execution of code.

Examples include the `Start-Process` cmdlet which can be used to run an executable and

the `Invoke-Command` cmdlet which runs a command locally or on a remote computer

(though administrator permissions are required to use PowerShell to connect to remote

systems). PowerShell may also be used to download and run executables from the

Internet, which can be executed from disk or in memory without touching disk. A number

of PowerShell-based offensive testing tools are available, including [Empire](https://

attack.mitre.org/software/S0363), [PowerSploit](https://attack.mitre.org/software/S0194),

[PoshC2](https://attack.mitre.org/software/S0378), and PSAttack.(Citation: Github PSAttack)

PowerShell commands/scripts can also be executed without directly invoking the

`powershell.exe` binary through interfaces to PowerShell's underlying

`System.Management.Automation` assembly DLL exposed through the .NET framework and

Windows Common Language Interface (CLI).(Citation: Sixdub PowerPick Jan 2016)(Citation:

SilentBreak Offensive PS Dec 2015)(Citation: Microsoft PSfromCsharp APR 2014)

Name

T1027

ID

TLP:CLEAR

9 Attack-Pattern

T1027

Description

Adversaries may attempt to make an executable or file difficult to discover or analyze by

encrypting, encoding, or otherwise obfuscating its contents on the system or in transit.

This is common behavior that can be used across different platforms and the network to

evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid

detection. These payloads may be used during Initial Access or later to mitigate detection.

Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or

Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https://

attack.mitre.org/techniques/T1204). The user may also be required to input a password to

open a password protected compressed/encrypted file that was provided by the adversary.

(Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or

archived scripts, such as JavaScript. Portions of files can also be encoded to hide the

plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/

Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly

benign files that only reveal malicious functionality when reassembled. (Citation: Carbon

Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https://

attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or

directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/

T1059). Environment variables, aliases, characters, and other platform/language specific

semantics can be used to evade signature based detections and application control

mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-

Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Name

T1105

ID

T1105

Description

Adversaries may transfer tools or other files from an external system into a compromised

environment. Tools or files may be copied from an external adversary-controlled system to

the victim network through the command and control channel or through alternate

TLP:CLEAR

10 Attack-Pattern

protocols such as [ftp](https://attack.mitre.org/software/S0095). Once present, adversaries

may also transfer/spread tools between victim devices within a compromised environment

(i.e. [Lateral Tool Transfer](https://attack.mitre.org/techniques/T1570)). On Windows,

adversaries may use various utilities to download tools, such as `copy`, `finger`, [certutil]

(https://attack.mitre.org/software/S0160), and [PowerShell](https://attack.mitre.org/

techniques/T1059/001) commands such as `IEX(New-Object

Net.WebClient).downloadString()` and `Invoke-WebRequest`. On Linux and macOS systems,

a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`.

(Citation: t1105_lolbas) Adversaries may also abuse installers and package managers, such

as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file

application features, such as the Windows `search-ms` protocol handler, to deliver

malicious files to victims through remote file searches invoked by [User Execution](https://

attack.mitre.org/techniques/T1204) (typically after interacting with [Phishing](https://

attack.mitre.org/techniques/T1566) lures).(Citation: T1105: Trellix_search-ms) Files can also

be transferred using various [Web Service](https://attack.mitre.org/techniques/T1102)s as

well as native or otherwise present tools on the victim system.(Citation: PTSecurity Cobalt

Dec 2016) In some cases, adversaries may be able to leverage services that sync between a

web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto

victim systems. For example, by compromising a cloud account and logging into the

service's web portal, an adversary may be able to trigger an automatic syncing process

that transfers the file onto the victim's machine.(Citation: Dropbox Malware Sync)

Name

T1059.005

ID

T1059.005

Description

Adversaries may abuse Visual Basic (VB) for execution. VB is a programming language

created by Microsoft with interoperability with many Windows technologies such as

[Component Object Model](https://attack.mitre.org/techniques/T1559/001) and the [Native

API](https://attack.mitre.org/techniques/T1106) through the Windows API. Although tagged

as legacy with no planned future evolutions, VB is integrated and supported in the .NET

Framework and cross-platform .NET Core.(Citation: VB .NET Mar 2020)(Citation: VB

Microsoft) Derivative languages based on VB have also been created, such as Visual Basic

for Applications (VBA) and VBScript. VBA is an event-driven programming language built

into Microsoft Office, as well as several third-party applications.(Citation: Microsoft VBA)

TLP:CLEAR

11 Attack-Pattern

(Citation: Wikipedia VBA) VBA enables documents to contain macros used to automate the

execution of tasks and other functionality on the host. VBScript is a default scripting

language on Windows hosts and can also be used in place of [JavaScript](https://

attack.mitre.org/techniques/T1059/007) on HTML Application (HTA) webpages served to

Internet Explorer (though most modern browsers do not come with VBScript support).

(Citation: Microsoft VBScript) Adversaries may use VB payloads to execute malicious

commands. Common malicious usage includes automating execution of behaviors with

VBScript or embedding VBA content into [Spearphishing Attachment](https://

attack.mitre.org/techniques/T1566/001) payloads (which may also involve [Mark-of-the-

Web Bypass](https://attack.mitre.org/techniques/T1553/005) to enable execution).(Citation:

Default VBS macros Blocking)

Name

T1497.001

ID

T1497.001

Description

Adversaries may employ various system checks to detect and avoid virtualization and

analysis environments. This may include changing behaviors based on the results of

checks for the presence of artifacts indicative of a virtual machine environment (VME) or

sandbox. If the adversary detects a VME, they may alter their malware to disengage from

the victim or conceal the core functions of the implant. They may also search for VME

artifacts before dropping secondary or additional payloads. Adversaries may use the

information learned from [Virtualization/Sandbox Evasion](https://attack.mitre.org/

techniques/T1497) during automated discovery to shape follow-on behaviors.(Citation:

Deloitte Environment Awareness) Specific checks will vary based on the target and/or

adversary, but may involve behaviors such as [Windows Management Instrumentation]

(https://attack.mitre.org/techniques/T1047), [PowerShell](https://attack.mitre.org/

techniques/T1059/001), [System Information Discovery](https://attack.mitre.org/

techniques/T1082), and [Query Registry](https://attack.mitre.org/techniques/T1012) to

obtain system information and search for VME artifacts. Adversaries may search for VME

artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may

use scripting to automate these checks into one script and then have the program exit if it

determines the system to be a virtual environment. Checks could include generic system

properties such as host/domain name and samples of network traffic. Adversaries may

also check the network adapters addresses, CPU core count, and available memory/drive

TLP:CLEAR

12 Attack-Pattern

size. Once executed, malware may also use [File and Directory Discovery](https://

attack.mitre.org/techniques/T1083) to check if it was saved in a folder or file with

unexpected or even analysis-related naming artifacts such as `malware`, `sample`, or

`hash`. Other common checks may enumerate services running that are unique to these

applications, installed programs on the system, manufacturer/product fields for strings

relating to virtual machine applications, and VME-specific hardware/processor

instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can

also use a special I/O port to send commands and receive output. Hardware checks, such

as the presence of the fan, temperature, and audio devices, could also be used to gather

evidence that can be indicative a virtual environment. Adversaries may also query for

specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)

Name

T1113

ID

T1113

Description

Adversaries may attempt to take screen captures of the desktop to gather information

over the course of an operation. Screen capturing functionality may be included as a

feature of a remote access tool used in post-compromise operations. Taking a screenshot

is also typically possible through native utilities or API calls, such as `CopyFromScreen`,

`xwd`, or `screencapture`.(Citation: CopyFromScreen .NET)(Citation: Antiquated Mac

Malware)

TLP:CLEAR

13 Attack-Pattern

Indicator

Name

81.19.137.179

Pattern Type

stix

Pattern

[ipv4-addr:value = '81.19.137.179']

Name

https://cryptomac.dev/download/grabber.zip

Pattern Type

stix

Pattern

[url:value = 'https://cryptomac.dev/download/grabber.zip']

Name

122877b338ec943ac0b33dcedc973aab6db48dd93cd30263255a7e7351ee60e6

TLP:CLEAR

14 Indicator

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'122877b338ec943ac0b33dcedc973aab6db48dd93cd30263255a7e7351ee60e6']

TLP:CLEAR

15 Indicator

Malware

Name

infostealer

Name

CryptoTrade

Name

macos

TLP:CLEAR

16 Malware

indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

17 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

18 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

19 indicates

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

20 indicates

based-on

Name

Name

Name

TLP:CLEAR

21 based-on

uses

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

22 uses

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

23 uses

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

24 uses

StixFile

Value

122877b338ec943ac0b33dcedc973aab6db48dd93cd30263255a7e7351ee60e6

TLP:CLEAR

25 StixFile

IPv4-Addr

Value

81.19.137.179

TLP:CLEAR

26 IPv4-Addr

Url

Value

https://cryptomac.dev/download/grabber.zip

TLP:CLEAR

27 Url

External References

• https://www.kandji.io/blog/infostealer-swiftui-opendirectory-api-capture-verify-passwords

• https://otx.alienvault.com/pulse/66b5fcde122c57bd9724b52c

TLP:CLEAR

28 External References

https://www.kandji.io/blog/infostealer-swiftui-opendirectory-api-capture-verify-passwords
https://otx.alienvault.com/pulse/66b5fcde122c57bd9724b52c

	Intelligence Report
	Table of contents
	Overview
	Entities
	Observables
	External References

	Overview
	Description
	Confidence

	Content
	Attack-Pattern
	Indicator
	Malware
	indicates
	based-on
	uses
	StixFile
	IPv4-Addr
	Url
	External References

