
Jun 27 2024

Intelligence Report
Polyfill supply chain attack
hits 100K+ sites

 N/A

 N/A

 N/A

 N/A

 info@netmanageit.com

 https://www.netmanageit.com

1

4

4

5

6

12

15

16

22

23

24

Table of contents

Overview

• Description

• Confidence

• Content

Entities

• Attack-Pattern

• Indicator

• Malware

• indicates

• uses

• based-on

Observables

• Domain-Name

TLP:CLEAR

2 Table of contents

25

26

27

• Hostname

• Url

External References

• External References

TLP:CLEAR

3 Table of contents

Overview

Description

A malicious Chinese entity acquired control over the popular Polyfill JS open-source project and

has been injecting malware into over 100,000 websites that embed the polyfill.io content

delivery network. The malware redirects mobile users to a fraudulent sports betting site hosted

on a domain impersonating Google Analytics. The attack employs various evasion techniques

and targets specific devices and time windows. While trustworthy alternatives are available, it's

recommended to remove any references to polyfill.io from your codebase as the library is no

longer necessary for modern browsers.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

100 / 100

TLP:CLEAR

4 Overview

Content

N/A

TLP:CLEAR

5 Content

Attack-Pattern

Name

T1036.003

ID

T1036.003

Description

Adversaries may rename legitimate system utilities to try to evade security mechanisms

concerning the usage of those utilities. Security monitoring and control mechanisms may

be in place for system utilities adversaries are capable of abusing. (Citation: LOLBAS Main

Site) It may be possible to bypass those security mechanisms by renaming the utility prior

to utilization (ex: rename `rundll32.exe`). (Citation: Elastic Masquerade Ball) An alternative

case occurs when a legitimate utility is copied or moved to a different directory and

renamed to avoid detections based on system utilities executing from non-standard paths.

(Citation: F-Secure CozyDuke)

Name

T1557.002

ID

T1557.002

Description

TLP:CLEAR

6 Attack-Pattern

Adversaries may poison Address Resolution Protocol (ARP) caches to position themselves

between the communication of two or more networked devices. This activity may be used

to enable follow-on behaviors such as [Network Sniffing](https://attack.mitre.org/

techniques/T1040) or [Transmitted Data Manipulation](https://attack.mitre.org/

techniques/T1565/002). The ARP protocol is used to resolve IPv4 addresses to link layer

addresses, such as a media access control (MAC) address.(Citation: RFC826 ARP) Devices in

a local network segment communicate with each other by using link layer addresses. If a

networked device does not have the link layer address of a particular networked device, it

may send out a broadcast ARP request to the local network to translate the IP address to a

MAC address. The device with the associated IP address directly replies with its MAC

address. The networked device that made the ARP request will then use as well as store

that information in its ARP cache. An adversary may passively wait for an ARP request to

poison the ARP cache of the requesting device. The adversary may reply with their MAC

address, thus deceiving the victim by making them believe that they are communicating

with the intended networked device. For the adversary to poison the ARP cache, their reply

must be faster than the one made by the legitimate IP address owner. Adversaries may

also send a gratuitous ARP reply that maliciously announces the ownership of a particular

IP address to all the devices in the local network segment. The ARP protocol is stateless

and does not require authentication. Therefore, devices may wrongly add or update the

MAC address of the IP address in their ARP cache.(Citation: Sans ARP Spoofing Aug 2003)

(Citation: Cylance Cleaver) Adversaries may use ARP cache poisoning as a means to

intercept network traffic. This activity may be used to collect and/or relay data such as

credentials, especially those sent over an insecure, unencrypted protocol.(Citation: Sans

ARP Spoofing Aug 2003)

Name

T1059.007

ID

T1059.007

Description

Adversaries may abuse various implementations of JavaScript for execution. JavaScript (JS)

is a platform-independent scripting language (compiled just-in-time at runtime)

commonly associated with scripts in webpages, though JS can be executed in runtime

environments outside the browser.(Citation: NodeJS) JScript is the Microsoft

implementation of the same scripting standard. JScript is interpreted via the Windows

TLP:CLEAR

7 Attack-Pattern

Script engine and thus integrated with many components of Windows such as the

[Component Object Model](https://attack.mitre.org/techniques/T1559/001) and Internet

Explorer HTML Application (HTA) pages.(Citation: JScrip May 2018)(Citation: Microsoft JScript

2007)(Citation: Microsoft Windows Scripts) JavaScript for Automation (JXA) is a macOS

scripting language based on JavaScript, included as part of Apple’s Open Scripting

Architecture (OSA), that was introduced in OSX 10.10. Apple’s OSA provides scripting

capabilities to control applications, interface with the operating system, and bridge access

into the rest of Apple’s internal APIs. As of OSX 10.10, OSA only supports two languages, JXA

and [AppleScript](https://attack.mitre.org/techniques/T1059/002). Scripts can be executed

via the command line utility `osascript`, they can be compiled into applications or script

files via `osacompile`, and they can be compiled and executed in memory of other

programs by leveraging the OSAKit Framework.(Citation: Apple About Mac Scripting 2016)

(Citation: SpecterOps JXA 2020)(Citation: SentinelOne macOS Red Team)(Citation: Red

Canary Silver Sparrow Feb2021)(Citation: MDSec macOS JXA and VSCode) Adversaries may

abuse various implementations of JavaScript to execute various behaviors. Common uses

include hosting malicious scripts on websites as part of a [Drive-by Compromise](https://

attack.mitre.org/techniques/T1189) or downloading and executing these script files as

secondary payloads. Since these payloads are text-based, it is also very common for

adversaries to obfuscate their content as part of [Obfuscated Files or Information](https://

attack.mitre.org/techniques/T1027).

Name

T1027.005

ID

T1027.005

Description

Adversaries may remove indicators from tools if they believe their malicious tool was

detected, quarantined, or otherwise curtailed. They can modify the tool by removing the

indicator and using the updated version that is no longer detected by the target's

defensive systems or subsequent targets that may use similar systems. A good example of

this is when malware is detected with a file signature and quarantined by anti-virus

software. An adversary who can determine that the malware was quarantined because of

its file signature may modify the file to explicitly avoid that signature, and then re-use the

malware.

TLP:CLEAR

8 Attack-Pattern

Name

T1189

ID

T1189

Description

Adversaries may gain access to a system through a user visiting a website over the normal

course of browsing. With this technique, the user's web browser is typically targeted for

exploitation, but adversaries may also use compromised websites for non-exploitation

behavior such as acquiring [Application Access Token](https://attack.mitre.org/

techniques/T1550/001). Multiple ways of delivering exploit code to a browser exist (i.e.,

[Drive-by Target](https://attack.mitre.org/techniques/T1608/004)), including: * A legitimate

website is compromised where adversaries have injected some form of malicious code

such as JavaScript, iFrames, and cross-site scripting * Script files served to a legitimate

website from a publicly writeable cloud storage bucket are modified by an adversary *

Malicious ads are paid for and served through legitimate ad providers (i.e., [Malvertising]

(https://attack.mitre.org/techniques/T1583/008)) * Built-in web application interfaces are

leveraged for the insertion of any other kind of object that can be used to display web

content or contain a script that executes on the visiting client (e.g. forum posts, comments,

and other user controllable web content). Often the website used by an adversary is one

visited by a specific community, such as government, a particular industry, or region,

where the goal is to compromise a specific user or set of users based on a shared interest.

This kind of targeted campaign is often referred to a strategic web compromise or watering

hole attack. There are several known examples of this occurring.(Citation: Shadowserver

Strategic Web Compromise) Typical drive-by compromise process: 1. A user visits a website

that is used to host the adversary controlled content. 2. Scripts automatically execute,

typically searching versions of the browser and plugins for a potentially vulnerable

version. * The user may be required to assist in this process by enabling scripting or active

website components and ignoring warning dialog boxes. 3. Upon finding a vulnerable

version, exploit code is delivered to the browser. 4. If exploitation is successful, then it will

give the adversary code execution on the user's system unless other protections are in

place. * In some cases a second visit to the website after the initial scan is required before

exploit code is delivered. Unlike [Exploit Public-Facing Application](https://

attack.mitre.org/techniques/T1190), the focus of this technique is to exploit software on a

client endpoint upon visiting a website. This will commonly give an adversary access to

systems on the internal network instead of external systems that may be in a DMZ.

Adversaries may also use compromised websites to deliver a user to a malicious

TLP:CLEAR

9 Attack-Pattern

application designed to [Steal Application Access Token](https://attack.mitre.org/

techniques/T1528)s, like OAuth tokens, to gain access to protected applications and

information. These malicious applications have been delivered through popups on

legitimate websites.(Citation: Volexity OceanLotus Nov 2017)

Name

T1564.003

ID

T1564.003

Description

Adversaries may use hidden windows to conceal malicious activity from the plain sight of

users. In some cases, windows that would typically be displayed when an application

carries out an operation can be hidden. This may be utilized by system administrators to

avoid disrupting user work environments when carrying out administrative tasks.

Adversaries may abuse these functionalities to hide otherwise visible windows from users

so as not to alert the user to adversary activity on the system.(Citation: Antiquated Mac

Malware) On macOS, the configurations for how applications run are listed in property list

(plist) files. One of the tags in these files can be `apple.awt.UIElement`, which allows for

Java applications to prevent the application's icon from appearing in the Dock. A common

use for this is when applications run in the system tray, but don't also want to show up in

the Dock. Similarly, on Windows there are a variety of features in scripting languages, such

as [PowerShell](https://attack.mitre.org/techniques/T1059/001), Jscript, and [Visual Basic]

(https://attack.mitre.org/techniques/T1059/005) to make windows hidden. One example of

this is `powershell.exe -WindowStyle Hidden`.(Citation: PowerShell About 2019) In addition,

Windows supports the `CreateDesktop()` API that can create a hidden desktop window with

its own corresponding `explorer.exe` process.(Citation: Hidden VNC)(Citation: Anatomy of

an hVNC Attack) All applications running on the hidden desktop window, such as a hidden

VNC (hVNC) session,(Citation: Hidden VNC) will be invisible to other desktops windows.

Name

T1608

ID

TLP:CLEAR

10 Attack-Pattern

T1608

Description

Adversaries may upload, install, or otherwise set up capabilities that can be used during

targeting. To support their operations, an adversary may need to take capabilities they

developed ([Develop Capabilities](https://attack.mitre.org/techniques/T1587)) or obtained

([Obtain Capabilities](https://attack.mitre.org/techniques/T1588)) and stage them on

infrastructure under their control. These capabilities may be staged on infrastructure that

was previously purchased/rented by the adversary ([Acquire Infrastructure](https://

attack.mitre.org/techniques/T1583)) or was otherwise compromised by them ([Compromise

Infrastructure](https://attack.mitre.org/techniques/T1584)). Capabilities may also be

staged on web services, such as GitHub or Pastebin, or on Platform-as-a-Service (PaaS)

offerings that enable users to easily provision applications.(Citation: Volexity Ocean Lotus

November 2020)(Citation: Dragos Heroku Watering Hole)(Citation: Malwarebytes Heroku

Skimmers)(Citation: Netskope GCP Redirection)(Citation: Netskope Cloud Phishing) Staging

of capabilities can aid the adversary in a number of initial access and post-compromise

behaviors, including (but not limited to): * Staging web resources necessary to conduct

[Drive-by Compromise](https://attack.mitre.org/techniques/T1189) when a user browses to

a site.(Citation: FireEye CFR Watering Hole 2012)(Citation: Gallagher 2015)(Citation: ATT

ScanBox) * Staging web resources for a link target to be used with spearphishing.(Citation:

Malwarebytes Silent Librarian October 2020)(Citation: Proofpoint TA407 September 2019) *

Uploading malware or tools to a location accessible to a victim network to enable [Ingress

Tool Transfer](https://attack.mitre.org/techniques/T1105).(Citation: Volexity Ocean Lotus

November 2020) * Installing a previously acquired SSL/TLS certificate to use to encrypt

command and control traffic (ex: [Asymmetric Cryptography](https://attack.mitre.org/

techniques/T1573/002) with [Web Protocols](https://attack.mitre.org/techniques/

T1071/001)).(Citation: DigiCert Install SSL Cert)

TLP:CLEAR

11 Attack-Pattern

Indicator

Name

https://www.googie-anaiytics.com/html/checkcachehw.js

Pattern Type

stix

Pattern

[url:value = 'https://www.googie-anaiytics.com/html/checkcachehw.js']

Name

ecomscan.com

Pattern Type

stix

Pattern

[domain-name:value = 'ecomscan.com']

Name

www.ys752.com

TLP:CLEAR

12 Indicator

Pattern Type

stix

Pattern

[hostname:value = 'www.ys752.com']

Name

kuurza.com

Pattern Type

stix

Pattern

[domain-name:value = 'kuurza.com']

Name

https://www.googie-anaiytics.com/ga.js

Pattern Type

stix

Pattern

[url:value = 'https://www.googie-anaiytics.com/ga.js']

Name

www.dxtv1.com

TLP:CLEAR

13 Indicator

Pattern Type

stix

Pattern

[hostname:value = 'www.dxtv1.com']

Name

https://kuurza.com/redirect?from=bitget

Pattern Type

stix

Pattern

[url:value = 'https://kuurza.com/redirect?from=bitget']

TLP:CLEAR

14 Indicator

Malware

Name

polyfill.js

TLP:CLEAR

15 Malware

indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

16 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

17 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

18 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

19 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

20 indicates

Name

Name

Name

TLP:CLEAR

21 indicates

uses

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

22 uses

based-on

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

23 based-on

Domain-Name

Value

ecomscan.com

kuurza.com

TLP:CLEAR

24 Domain-Name

Hostname

Value

www.dxtv1.com

www.ys752.com

TLP:CLEAR

25 Hostname

Url

Value

https://kuurza.com/redirect?from=bitget

https://www.googie-anaiytics.com/ga.js

https://www.googie-anaiytics.com/html/checkcachehw.js

TLP:CLEAR

26 Url

External References

• https://sansec.io/research/polyfill-supply-chain-attack

• https://otx.alienvault.com/pulse/667d5bd4a98d33d3486fff19

TLP:CLEAR

27 External References

https://sansec.io/research/polyfill-supply-chain-attack
https://otx.alienvault.com/pulse/667d5bd4a98d33d3486fff19

	Intelligence Report
	Table of contents
	Overview
	Entities
	Observables
	External References

	Overview
	Description
	Confidence

	Content
	Attack-Pattern
	Indicator
	Malware
	indicates
	uses
	based-on
	Domain-Name
	Hostname
	Url
	External References

