NETMANAGE

Intelligence Report New Updates to ValleyRAT

Table of contents

Overview

•	Description	3
•	Confidence	3
•	Content	4

Entities

•	Attack-Pattern	5
•	Malware	13
•	uses	14

External References

•	External References	16

Overview

Description

Zscaler ThreatLabz recently uncovered a new campaign used to deliver the latest iteration of ValleyRAT, a remote access trojan attributed to a China-based threat actor. The campaign involves multiple stages, with the initial stage downloader utilizing an HTTP File Server (HFS) to fetch subsequent components. The malware employs various evasive techniques such as antivirus checks, DLL sideloading, and process injection. ValleyRAT's latest version introduces new capabilities like capturing screenshots, process filtering, forced shutdowns, and clearing Windows event logs. Additionally, it enhances device fingerprinting and bot ID generation mechanisms.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

100 / 100

Content

N/A

Attack-Pattern

N	me	
T	57	
11		
T	57	

Description

Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/ applications running on systems within the network. Adversaries may use the information from [Process Discovery](https://attack.mitre.org/techniques/T1057) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. In Windows environments, adversaries could obtain details on running processes using the [Tasklist](https://attack.mitre.org/ software/S0057) utility via [cmd](https://attack.mitre.org/software/S0106) or `Get-Process` via [PowerShell](https://attack.mitre.org/techniques/T1059/001). Information about processes can also be extracted from the output of [Native API](https://attack.mitre.org/ techniques/T1106) calls such as `CreateToolhelp32Snapshot`. In Mac and Linux, this is accomplished with the `ps` command. Adversaries may also opt to enumerate processes via /proc. On network devices, [Network Device CLI](https://attack.mitre.org/techniques/ T1059/008) commands such as `show processes` can be used to display current running processes.(Citation: US-CERT-TA18-106A)(Citation: show_processes_cisco_cmd)

Name

T1518.001

T1518.001

Description

Adversaries may attempt to get a listing of security software, configurations, defensive tools, and sensors that are installed on a system or in a cloud environment. This may include things such as firewall rules and anti-virus. Adversaries may use the information from [Security Software Discovery](https://attack.mitre.org/techniques/T1518/001) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Example commands that can be used to obtain security software information are [netsh](https://attack.mitre.org/software/ S0108), `reg query` with [Reg](https://attack.mitre.org/software/S0075), `dir` with [cmd] (https://attack.mitre.org/software/S0106), and [Tasklist](https://attack.mitre.org/software/ S0057), but other indicators of discovery behavior may be more specific to the type of software or security system the adversary is looking for. It is becoming more common to see macOS malware perform checks for LittleSnitch and KnockKnock software. Adversaries may also utilize cloud APIs to discover the configurations of firewall rules within an environment.(Citation: Expel IO Evil in AWS) For example, the permitted IP ranges, ports or user accounts for the inbound/outbound rules of security groups, virtual firewalls established within AWS for EC2 and/or VPC instances, can be revealed by the `DescribeSecurityGroups` action with various request parameters. (Citation: DescribeSecurityGroups - Amazon Elastic Compute Cloud)

Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking

users into misidentifying the file type, and giving legitimate task or service names. Renaming abusable system utilities to evade security monitoring is also a form of [Masquerading](https://attack.mitre.org/techniques/T1036).(Citation: LOLBAS Main Site) Masquerading may also include the use of [Proxy](https://attack.mitre.org/techniques/ T1090) or VPNs to disguise IP addresses, which can allow adversaries to blend in with normal network traffic and bypass conditional access policies or anti-abuse protections.

Name
T1055
ID
T1055
Description

Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process. There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific. More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.

Name	
T1010	
ID	
T1010	
Description	

Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used.(Citation: Prevailion DarkWatchman 2021) For example, information about application windows could be used identify potential data to collect as well as identifying security tooling ([Security Software Discovery](https://attack.mitre.org/techniques/T1518/001)) to evade.(Citation: ESET Grandoreiro April 2020) Adversaries typically abuse system features for this type of enumeration. For example, they may gather information through native system features such as [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059) commands and [Native API](https://attack.mitre.org/techniques/T1106) functions.

Name		
T1529		
ID		
T1529		

Description

Adversaries may shutdown/reboot systems to interrupt access to, or aid in the destruction of, those systems. Operating systems may contain commands to initiate a shutdown/ reboot of a machine or network device. In some cases, these commands may also be used to initiate a shutdown/reboot of a remote computer or network device via [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) (e.g. `reload`).(Citation: Microsoft Shutdown Oct 2017)(Citation: alert_TA18_106A) Shutting down or rebooting systems may disrupt access to computer resources for legitimate users while also impeding incident response/recovery. Adversaries may attempt to shutdown/reboot a system after impacting it in other ways, such as [Disk Structure Wipe](https://attack.mitre.org/techniques/ T1561/002) or [Inhibit System Recovery](https://attack.mitre.org/techniques/T1490), to hasten the intended effects on system availability.(Citation: Talos Nyetya June 2017) (Citation: Talos Olympic Destroyer 2018)

Name

T1574.002

D

T1574.002

Description

Adversaries may execute their own malicious payloads by side-loading DLLs. Similar to [DLL Search Order Hijacking](https://attack.mitre.org/techniques/T1574/001), side-loading involves hijacking which DLL a program loads. But rather than just planting the DLL within the search order of a program then waiting for the victim application to be invoked, adversaries may directly side-load their payloads by planting then invoking a legitimate application that executes their payload(s). Side-loading takes advantage of the DLL search order used by the loader by positioning both the victim application and malicious payload(s) alongside each other. Adversaries likely use side-loading as a means of masking actions they perform under a legitimate, trusted, and potentially elevated system or software process. Benign executables used to side-load payloads may not be flagged during delivery and/or execution. Adversary payloads may also be encrypted/packed or otherwise obfuscated until loaded into the memory of the trusted process.(Citation: FireEye DLL Side-Loading)

Name				
T1120				
ID				
T1120				
Description				

Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux) (Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.

Name

T1071

ID

T1071

Description

scription

Adversaries may communicate using OSI application layer protocols to avoid detection/ network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, or DNS. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.

Name		
T1140		
ID		
T1140		

Adversaries may use [Obfuscated Files or Information](https://attack.mitre.org/ techniques/T1027) to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system. One such example is the use of [certutil](https:// attack.mitre.org/software/S0160) to decode a remote access tool portable executable file that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack against Saudi Arabia) Another example is using the Windows `copy /b` command to reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation Sept 2016) Sometimes a user's action may be required to open it for deobfuscation or decryption as part of [User Execution](https://attack.mitre.org/techniques/T1204). The user may also be required to input a password to open a password protected compressed/ encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016)

Name	
T1083	
ID	
T1083	
Description	

Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from [File and Directory Discovery](https://attack.mitre.org/techniques/T1083) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Many command shell utilities can be used to obtain this information. Examples include `dir`, `tree`, `ls`, `find`, and `locate`.(Citation: Windows Commands JPCERT) Custom tools may also be used to gather file and directory information and interact with the [Native API](https:// attack.mitre.org/techniques/T106). Adversaries may also leverage a [Network Device CLI] (https://attack.mitre.org/techniques/T1059/008) on network devices to gather file and directory information (e.g. `dir`, `show flash`, and/or `nvram`).(Citation: US-CERT-TA18-106A)

Name	
T1113	
ID	
T1113	
Description	

Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as `CopyFromScreen`,

`xwd`, or `screencapture`.(Citation: CopyFromScreen .NET)(Citation: Antiquated Mac Malware)

Name		
T1082		
ID		
T1082		

Description

An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from [System Information Discovery](https://attack.mitre.org/ techniques/T1082) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as [Systeminfo](https://attack.mitre.org/software/S0096) can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the `systemsetup` configuration tool on macOS. As an example, adversaries with user-level access can execute the `df -aH` command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) on network devices to gather detailed system information (e.g. `show version`).(Citation: US-CERT-TA18-106A) [System Information Discovery](https://attack.mitre.org/techniques/T1082) combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.(Citation: OSX.FairyTale)(Citation: 20 macOS Common Tools and Techniques) Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.(Citation: Amazon Describe Instance)(Citation: Google Instances Resource)(Citation: Microsoft Virutal Machine API)

Malware

Name

ValleyRAT

uses

Name		
Name		

Name		
Name		
Name		
Name		

External References

• https://www.zscaler.com/blogs/security-research/technical-analysis-latest-variant-valleyrat

• https://otx.alienvault.com/pulse/66671e8ed37c903dcf36edbd