
Jun 11 2024

Intelligence Report
Dissecting SSLoad
Malware: A Comprehensive
Technical Analysis

 N/A

 N/A

 N/A

 N/A

 info@netmanageit.com

 https://www.netmanageit.com

1

4

4

5

6

16

19

20

23

24

29

Table of contents

Overview

• Description

• Confidence

• Content

Entities

• Attack-Pattern

• Indicator

• Malware

• uses

• based-on

• indicates

Observables

• StixFile

TLP:CLEAR

2 Table of contents

30

31

• IPv4-Addr

External References

• External References

TLP:CLEAR

3 Table of contents

Overview

Description

This in-depth analysis explores the intricate inner workings of SSLoad, a stealthy and adaptable

malware known for its sophisticated delivery methods and evasion techniques. The

comprehensive investigation unravels the malware's multistage infection chain, dissecting the

various loaders, decryption algorithms, and payloads employed across different campaigns. The

analysis highlights SSLoad's ability to gather reconnaissance, evade detection, and deploy

additional malicious components, underscoring its versatility and ever-evolving nature.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

100 / 100

TLP:CLEAR

4 Overview

Content

N/A

TLP:CLEAR

5 Content

Attack-Pattern

Name

T1064

ID

T1064

Description

**This technique has been deprecated. Please use [Command and Scripting Interpreter]

(https://attack.mitre.org/techniques/T1059) where appropriate.** Adversaries may use

scripts to aid in operations and perform multiple actions that would otherwise be manual.

Scripting is useful for speeding up operational tasks and reducing the time required to

gain access to critical resources. Some scripting languages may be used to bypass process

monitoring mechanisms by directly interacting with the operating system at an API level

instead of calling other programs. Common scripting languages for Windows include

VBScript and [PowerShell](https://attack.mitre.org/techniques/T1086) but could also be in

the form of command-line batch scripts. Scripts can be embedded inside Office

documents as macros that can be set to execute when files used in [Spearphishing

Attachment](https://attack.mitre.org/techniques/T1193) and other types of spearphishing

are opened. Malicious embedded macros are an alternative means of execution than

software exploitation through [Exploitation for Client Execution](https://attack.mitre.org/

techniques/T1203), where adversaries will rely on macros being allowed or that the user

will accept to activate them. Many popular offensive frameworks exist which use forms of

scripting for security testers and adversaries alike. Metasploit (Citation: Metasploit_Ref),

Veil (Citation: Veil_Ref), and PowerSploit (Citation: Powersploit) are three examples that

are popular among penetration testers for exploit and post-compromise operations and

include many features for evading defenses. Some adversaries are known to use

PowerShell. (Citation: Alperovitch 2014)

TLP:CLEAR

6 Attack-Pattern

Name

T1055

ID

T1055

Description

Adversaries may inject code into processes in order to evade process-based defenses as

well as possibly elevate privileges. Process injection is a method of executing arbitrary

code in the address space of a separate live process. Running code in the context of

another process may allow access to the process's memory, system/network resources,

and possibly elevated privileges. Execution via process injection may also evade detection

from security products since the execution is masked under a legitimate process. There

are many different ways to inject code into a process, many of which abuse legitimate

functionalities. These implementations exist for every major OS but are typically platform

specific. More sophisticated samples may perform multiple process injections to segment

modules and further evade detection, utilizing named pipes or other inter-process

communication (IPC) mechanisms as a communication channel.

Name

T1573

ID

T1573

Description

Adversaries may employ a known encryption algorithm to conceal command and control

traffic rather than relying on any inherent protections provided by a communication

protocol. Despite the use of a secure algorithm, these implementations may be vulnerable

to reverse engineering if secret keys are encoded and/or generated within malware

samples/configuration files.

TLP:CLEAR

7 Attack-Pattern

Name

T1071.001

ID

T1071.001

Description

Adversaries may communicate using application layer protocols associated with web traffic

to avoid detection/network filtering by blending in with existing traffic. Commands to the

remote system, and often the results of those commands, will be embedded within the

protocol traffic between the client and server. Protocols such as HTTP/S(Citation:

CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web

traffic may be very common in environments. HTTP/S packets have many fields and

headers in which data can be concealed. An adversary may abuse these protocols to

communicate with systems under their control within a victim network while also

mimicking normal, expected traffic.

Name

T1059.001

ID

T1059.001

Description

Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a

powerful interactive command-line interface and scripting environment included in the

Windows operating system.(Citation: TechNet PowerShell) Adversaries can use PowerShell

to perform a number of actions, including discovery of information and execution of code.

Examples include the `Start-Process` cmdlet which can be used to run an executable and

the `Invoke-Command` cmdlet which runs a command locally or on a remote computer

(though administrator permissions are required to use PowerShell to connect to remote

systems). PowerShell may also be used to download and run executables from the

TLP:CLEAR

8 Attack-Pattern

Internet, which can be executed from disk or in memory without touching disk. A number

of PowerShell-based offensive testing tools are available, including [Empire](https://

attack.mitre.org/software/S0363), [PowerSploit](https://attack.mitre.org/software/S0194),

[PoshC2](https://attack.mitre.org/software/S0378), and PSAttack.(Citation: Github PSAttack)

PowerShell commands/scripts can also be executed without directly invoking the

`powershell.exe` binary through interfaces to PowerShell's underlying

`System.Management.Automation` assembly DLL exposed through the .NET framework and

Windows Common Language Interface (CLI).(Citation: Sixdub PowerPick Jan 2016)(Citation:

SilentBreak Offensive PS Dec 2015)(Citation: Microsoft PSfromCsharp APR 2014)

Name

T1553

ID

T1553

Description

Adversaries may undermine security controls that will either warn users of untrusted

activity or prevent execution of untrusted programs. Operating systems and security

products may contain mechanisms to identify programs or websites as possessing some

level of trust. Examples of such features would include a program being allowed to run

because it is signed by a valid code signing certificate, a program prompting the user with

a warning because it has an attribute set from being downloaded from the Internet, or

getting an indication that you are about to connect to an untrusted site. Adversaries may

attempt to subvert these trust mechanisms. The method adversaries use will depend on

the specific mechanism they seek to subvert. Adversaries may conduct [File and Directory

Permissions Modification](https://attack.mitre.org/techniques/T1222) or [Modify Registry]

(https://attack.mitre.org/techniques/T1112) in support of subverting these controls.

(Citation: SpectorOps Subverting Trust Sept 2017) Adversaries may also create or steal code

signing certificates to acquire trust on target systems.(Citation: Securelist Digital

Certificates)(Citation: Symantec Digital Certificates)

Name

T1027

TLP:CLEAR

9 Attack-Pattern

ID

T1027

Description

Adversaries may attempt to make an executable or file difficult to discover or analyze by

encrypting, encoding, or otherwise obfuscating its contents on the system or in transit.

This is common behavior that can be used across different platforms and the network to

evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid

detection. These payloads may be used during Initial Access or later to mitigate detection.

Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or

Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https://

attack.mitre.org/techniques/T1204). The user may also be required to input a password to

open a password protected compressed/encrypted file that was provided by the adversary.

(Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or

archived scripts, such as JavaScript. Portions of files can also be encoded to hide the

plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/

Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly

benign files that only reveal malicious functionality when reassembled. (Citation: Carbon

Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https://

attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or

directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/

T1059). Environment variables, aliases, characters, and other platform/language specific

semantics can be used to evade signature based detections and application control

mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-

Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Name

T1105

ID

T1105

Description

TLP:CLEAR

10 Attack-Pattern

Adversaries may transfer tools or other files from an external system into a compromised

environment. Tools or files may be copied from an external adversary-controlled system to

the victim network through the command and control channel or through alternate

protocols such as [ftp](https://attack.mitre.org/software/S0095). Once present, adversaries

may also transfer/spread tools between victim devices within a compromised environment

(i.e. [Lateral Tool Transfer](https://attack.mitre.org/techniques/T1570)). On Windows,

adversaries may use various utilities to download tools, such as `copy`, `finger`, [certutil]

(https://attack.mitre.org/software/S0160), and [PowerShell](https://attack.mitre.org/

techniques/T1059/001) commands such as `IEX(New-Object

Net.WebClient).downloadString()` and `Invoke-WebRequest`. On Linux and macOS systems,

a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`.

(Citation: t1105_lolbas) Adversaries may also abuse installers and package managers, such

as `yum` or `winget`, to download tools to victim hosts. Files can also be transferred using

various [Web Service](https://attack.mitre.org/techniques/T1102)s as well as native or

otherwise present tools on the victim system.(Citation: PTSecurity Cobalt Dec 2016) In some

cases, adversaries may be able to leverage services that sync between a web-based and

an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems.

For example, by compromising a cloud account and logging into the service's web portal,

an adversary may be able to trigger an automatic syncing process that transfers the file

onto the victim's machine.(Citation: Dropbox Malware Sync)

Name

T1059.005

ID

T1059.005

Description

Adversaries may abuse Visual Basic (VB) for execution. VB is a programming language

created by Microsoft with interoperability with many Windows technologies such as

[Component Object Model](https://attack.mitre.org/techniques/T1559/001) and the [Native

API](https://attack.mitre.org/techniques/T1106) through the Windows API. Although tagged

as legacy with no planned future evolutions, VB is integrated and supported in the .NET

Framework and cross-platform .NET Core.(Citation: VB .NET Mar 2020)(Citation: VB

Microsoft) Derivative languages based on VB have also been created, such as Visual Basic

for Applications (VBA) and VBScript. VBA is an event-driven programming language built

into Microsoft Office, as well as several third-party applications.(Citation: Microsoft VBA)

TLP:CLEAR

11 Attack-Pattern

(Citation: Wikipedia VBA) VBA enables documents to contain macros used to automate the

execution of tasks and other functionality on the host. VBScript is a default scripting

language on Windows hosts and can also be used in place of [JavaScript](https://

attack.mitre.org/techniques/T1059/007) on HTML Application (HTA) webpages served to

Internet Explorer (though most modern browsers do not come with VBScript support).

(Citation: Microsoft VBScript) Adversaries may use VB payloads to execute malicious

commands. Common malicious usage includes automating execution of behaviors with

VBScript or embedding VBA content into [Spearphishing Attachment](https://

attack.mitre.org/techniques/T1566/001) payloads (which may also involve [Mark-of-the-

Web Bypass](https://attack.mitre.org/techniques/T1553/005) to enable execution).(Citation:

Default VBS macros Blocking)

Name

T1497.001

ID

T1497.001

Description

Adversaries may employ various system checks to detect and avoid virtualization and

analysis environments. This may include changing behaviors based on the results of

checks for the presence of artifacts indicative of a virtual machine environment (VME) or

sandbox. If the adversary detects a VME, they may alter their malware to disengage from

the victim or conceal the core functions of the implant. They may also search for VME

artifacts before dropping secondary or additional payloads. Adversaries may use the

information learned from [Virtualization/Sandbox Evasion](https://attack.mitre.org/

techniques/T1497) during automated discovery to shape follow-on behaviors.(Citation:

Deloitte Environment Awareness) Specific checks will vary based on the target and/or

adversary, but may involve behaviors such as [Windows Management Instrumentation]

(https://attack.mitre.org/techniques/T1047), [PowerShell](https://attack.mitre.org/

techniques/T1059/001), [System Information Discovery](https://attack.mitre.org/

techniques/T1082), and [Query Registry](https://attack.mitre.org/techniques/T1012) to

obtain system information and search for VME artifacts. Adversaries may search for VME

artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may

use scripting to automate these checks into one script and then have the program exit if it

determines the system to be a virtual environment. Checks could include generic system

properties such as host/domain name and samples of network traffic. Adversaries may

also check the network adapters addresses, CPU core count, and available memory/drive

TLP:CLEAR

12 Attack-Pattern

size. Other common checks may enumerate services running that are unique to these

applications, installed programs on the system, manufacturer/product fields for strings

relating to virtual machine applications, and VME-specific hardware/processor

instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can

also use a special I/O port to send commands and receive output. Hardware checks, such

as the presence of the fan, temperature, and audio devices, could also be used to gather

evidence that can be indicative a virtual environment. Adversaries may also query for

specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)

Name

T1553.002

ID

T1553.002

Description

Adversaries may create, acquire, or steal code signing materials to sign their malware or

tools. Code signing provides a level of authenticity on a binary from the developer and a

guarantee that the binary has not been tampered with. (Citation: Wikipedia Code Signing)

The certificates used during an operation may be created, acquired, or stolen by the

adversary. (Citation: Securelist Digital Certificates) (Citation: Symantec Digital Certificates)

Unlike [Invalid Code Signature](https://attack.mitre.org/techniques/T1036/001), this

activity will result in a valid signature. Code signing to verify software on first run can be

used on modern Windows and macOS systems. It is not used on Linux due to the

decentralized nature of the platform. (Citation: Wikipedia Code Signing)(Citation:

EclecticLightChecksonEXECodeSigning) Code signing certificates may be used to bypass

security policies that require signed code to execute on a system.

Name

T1083

ID

T1083

TLP:CLEAR

13 Attack-Pattern

Description

Adversaries may enumerate files and directories or may search in specific locations of a

host or network share for certain information within a file system. Adversaries may use the

information from [File and Directory Discovery](https://attack.mitre.org/techniques/T1083)

during automated discovery to shape follow-on behaviors, including whether or not the

adversary fully infects the target and/or attempts specific actions. Many command shell

utilities can be used to obtain this information. Examples include `dir`, `tree`, `ls`, `find`,

and `locate`.(Citation: Windows Commands JPCERT) Custom tools may also be used to

gather file and directory information and interact with the [Native API](https://

attack.mitre.org/techniques/T1106). Adversaries may also leverage a [Network Device CLI]

(https://attack.mitre.org/techniques/T1059/008) on network devices to gather file and

directory information (e.g. `dir`, `show flash`, and/or `nvram`).(Citation: US-CERT-TA18-106A)

Name

T1574.001

ID

T1574.001

Description

Adversaries may execute their own malicious payloads by hijacking the search order used

to load DLLs. Windows systems use a common method to look for required DLLs to load

into a program. (Citation: Microsoft Dynamic Link Library Search Order)(Citation: FireEye

Hijacking July 2010) Hijacking DLL loads may be for the purpose of establishing persistence

as well as elevating privileges and/or evading restrictions on file execution. There are

many ways an adversary can hijack DLL loads. Adversaries may plant trojan dynamic-link

library files (DLLs) in a directory that will be searched before the location of a legitimate

library that will be requested by a program, causing Windows to load their malicious

library when it is called for by the victim program. Adversaries may also perform DLL

preloading, also called binary planting attacks, (Citation: OWASP Binary Planting) by

placing a malicious DLL with the same name as an ambiguously specified DLL in a location

that Windows searches before the legitimate DLL. Often this location is the current

working directory of the program.(Citation: FireEye fxsst June 2011) Remote DLL preloading

attacks occur when a program sets its current directory to a remote location such as a

Web share before loading a DLL. (Citation: Microsoft Security Advisory 2269637) Adversaries

may also directly modify the search order via DLL redirection, which after being enabled

TLP:CLEAR

14 Attack-Pattern

(in the Registry and creation of a redirection file) may cause a program to load a different

DLL.(Citation: Microsoft Dynamic-Link Library Redirection)(Citation: Microsoft Manifests)

(Citation: FireEye DLL Search Order Hijacking) If a search order-vulnerable program is

configured to run at a higher privilege level, then the adversary-controlled DLL that is

loaded will also be executed at the higher level. In this case, the technique could be used

for privilege escalation from user to administrator or SYSTEM or from administrator to

SYSTEM, depending on the program. Programs that fall victim to path hijacking may appear

to behave normally because malicious DLLs may be configured to also load the legitimate

DLLs they were meant to replace.

TLP:CLEAR

15 Attack-Pattern

Indicator

Name

90f1511223698f33a086337a6875db3b5d6fbcce06f3195cdd6a8efa90091750

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'90f1511223698f33a086337a6875db3b5d6fbcce06f3195cdd6a8efa90091750']

Name

09ffc4188bf11bf059b616491fcb8a09a474901581f46ec7f2c350fbda4e1e1c

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'09ffc4188bf11bf059b616491fcb8a09a474901581f46ec7f2c350fbda4e1e1c']

Name

TLP:CLEAR

16 Indicator

6aa3daefee979a0efbd30de15a1fc7c0d05a6e8e3f439d5af3982878c3901a1c

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'6aa3daefee979a0efbd30de15a1fc7c0d05a6e8e3f439d5af3982878c3901a1c']

Name

6329244cfb3480eae11070f1aa880bff2fd52b374e12ac37f1eacb6379c72b80

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'6329244cfb3480eae11070f1aa880bff2fd52b374e12ac37f1eacb6379c72b80']

Name

265514c8b91b96062fd2960d52ee09d67ea081c56ebadd7a8661f479124133e9

Pattern Type

stix

Pattern

TLP:CLEAR

17 Indicator

[file:hashes.'SHA-256' =

'265514c8b91b96062fd2960d52ee09d67ea081c56ebadd7a8661f479124133e9']

Name

73774861d946d62c2105fef4718683796cb77de7ed42edaec7affcee5eb0a0ee

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'73774861d946d62c2105fef4718683796cb77de7ed42edaec7affcee5eb0a0ee']

Name

85.239.53.219

Description

ISP: BlueVPS OU **OS:** - -------------------------- Services: **80:** ``` HTTP/1.1 200 OK

Server: nginx Date: Fri, 07 Jun 2024 04:05:32 GMT Content-Type: text/html Content-Length:

612 Last-Modified: Thu, 04 Apr 2024 13:03:28 GMT Connection: keep-alive ETag:

"660ea520-264" Accept-Ranges: bytes ``` ------------------

Pattern Type

stix

Pattern

[ipv4-addr:value = '85.239.53.219']

TLP:CLEAR

18 Indicator

Malware

Name

Cobalt Strike - S0154

Name

SSLoad

Name

cobalt strike

Description

[Cobalt Strike](https://attack.mitre.org/software/S0154) is a commercial, full-featured,

remote access tool that bills itself as “adversary simulation software designed to execute

targeted attacks and emulate the post-exploitation actions of advanced threat actors”.

Cobalt Strike’s interactive post-exploit capabilities cover the full range of ATT&CK tactics,

all executed within a single, integrated system.(Citation: cobaltstrike manual) In addition

to its own capabilities, [Cobalt Strike](https://attack.mitre.org/software/S0154) leverages

the capabilities of other well-known tools such as Metasploit and [Mimikatz](https://

attack.mitre.org/software/S0002).(Citation: cobaltstrike manual)

TLP:CLEAR

19 Malware

uses

Name

Name

Name

Description

[Cobalt Strike](https://attack.mitre.org/software/S0154) can use self signed Java applets to

execute signed applet attacks.(Citation: Talos Cobalt Strike September 2020)(Citation:

Cobalt Strike Manual 4.3 November 2020)

Name

Name

Name

Name

TLP:CLEAR

20 uses

Description

[Cobalt Strike](https://attack.mitre.org/software/S0154) can hash functions to obfuscate

calls to the Windows API and use a public/private key pair to encrypt Beacon session

metadata.(Citation: Talos Cobalt Strike September 2020)(Citation: Cobalt Strike Manual 4.3

November 2020)

Name

Name

Name

Name

Name

Name

Name

Name

Description

TLP:CLEAR

21 uses

[Cobalt Strike](https://attack.mitre.org/software/S0154) can inject a variety of payloads

into processes dynamically chosen by the adversary.(Citation: cobaltstrike manual)

(Citation: Cobalt Strike Manual 4.3 November 2020)(Citation: DFIR Conti Bazar Nov 2021)

Name

Name

Description

[Cobalt Strike](https://attack.mitre.org/software/S0154) can use VBA to perform execution.

(Citation: Cobalt Strike TTPs Dec 2017)(Citation: CobaltStrike Daddy May 2017)

Name

Description

[Cobalt Strike](https://attack.mitre.org/software/S0154) can execute a payload on a remote

host with PowerShell. This technique does not write any data to disk.(Citation: cobaltstrike

manual)(Citation: Cyberreason Anchor December 2019) [Cobalt Strike](https://

attack.mitre.org/software/S0154) can also use [PowerSploit](https://attack.mitre.org/

software/S0194) and other scripting frameworks to perform execution.(Citation: Cobalt

Strike TTPs Dec 2017)(Citation: CobaltStrike Daddy May 2017)

TLP:CLEAR

22 uses

based-on

Name

Name

Name

Name

Name

TLP:CLEAR

23 based-on

indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

24 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

25 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

26 indicates

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

Name

TLP:CLEAR

27 indicates

Name

Name

Name

Name

Name

TLP:CLEAR

28 indicates

StixFile

Value

09ffc4188bf11bf059b616491fcb8a09a474901581f46ec7f2c350fbda4e1e1c

90f1511223698f33a086337a6875db3b5d6fbcce06f3195cdd6a8efa90091750

6329244cfb3480eae11070f1aa880bff2fd52b374e12ac37f1eacb6379c72b80

6aa3daefee979a0efbd30de15a1fc7c0d05a6e8e3f439d5af3982878c3901a1c

265514c8b91b96062fd2960d52ee09d67ea081c56ebadd7a8661f479124133e9

73774861d946d62c2105fef4718683796cb77de7ed42edaec7affcee5eb0a0ee

TLP:CLEAR

29 StixFile

IPv4-Addr

Value

85.239.53.219

TLP:CLEAR

30 IPv4-Addr

External References

• https://intezer.com/blog/research/ssload-technical-malware-analysis/

• https://otx.alienvault.com/pulse/66672064dd2deec2c6d74a3c

TLP:CLEAR

31 External References

https://intezer.com/blog/research/ssload-technical-malware-analysis/
https://otx.alienvault.com/pulse/66672064dd2deec2c6d74a3c

	Intelligence Report
	Table of contents
	Overview
	Entities
	Observables
	External References

	Overview
	Description
	Confidence

	Content
	Attack-Pattern
	Indicator
	Malware
	uses
	based-on
	indicates
	StixFile
	IPv4-Addr
	External References

