
May 10 2024

Intelligence Report
Dissecting REMCOS RAT: An
in-depth analysis of a
widespread 2024 malware,
Part Four

 N/A

 N/A

 N/A

 N/A

 info@netmanageit.com

 https://www.netmanageit.com

1

3

3

4

5

6

7

13

Table of contents

Overview

• Description

• Confidence

• Content

Entities

• Intrusion-Set

• Malware

• Attack-Pattern

External References

• External References

TLP:CLEAR

2 Table of contents

Overview

Description

This comprehensive analysis provides a thorough examination of the REMCOS Remote Access

Trojan (RAT), a prominent malware threat that gained significant prevalence in 2024. The

analysis delves into the malware's configuration structure, command and control capabilities,

persistence mechanisms, and evasion techniques, while also offering insights into effective

detection strategies using Elastic technologies.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

100 / 100

TLP:CLEAR

3 Overview

Content

N/A

TLP:CLEAR

4 Content

Intrusion-Set

Name

REMCOS

TLP:CLEAR

5 Intrusion-Set

Malware

Name

remote access

Name

REMCOS

TLP:CLEAR

6 Malware

Attack-Pattern

Name

T1055.001

ID

T1055.001

Description

Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade

process-based defenses as well as possibly elevate privileges. DLL injection is a method of

executing arbitrary code in the address space of a separate live process. DLL injection is

commonly performed by writing the path to a DLL in the virtual address space of the

target process before loading the DLL by invoking a new thread. The write can be

performed with native Windows API calls such as `VirtualAllocEx` and

`WriteProcessMemory`, then invoked with `CreateRemoteThread` (which calls the

`LoadLibrary` API responsible for loading the DLL). (Citation: Elastic Process Injection July

2017) Variations of this method such as reflective DLL injection (writing a self-mapping DLL

into a process) and memory module (map DLL when writing into process) overcome the

address relocation issue as well as the additional APIs to invoke execution (since these

methods load and execute the files in memory by manually preforming the function of

`LoadLibrary`).(Citation: Elastic HuntingNMemory June 2017)(Citation: Elastic Process

Injection July 2017) Another variation of this method, often referred to as Module

Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within

a process. This method involves loading a legitimate DLL into a remote process then

manually overwriting the module's `AddressOfEntryPoint` before starting a new thread in

the target process.(Citation: Module Stomping for Shellcode Injection) This variation allows

attackers to hide malicious injected code by potentially backing its execution with a

legitimate DLL file on disk.(Citation: Hiding Malicious Code with Module Stomping) Running

code in the context of another process may allow access to the process's memory, system/

TLP:CLEAR

7 Attack-Pattern

network resources, and possibly elevated privileges. Execution via DLL injection may also

evade detection from security products since the execution is masked under a legitimate

process.

Name

T1059.005

ID

T1059.005

Description

Adversaries may abuse Visual Basic (VB) for execution. VB is a programming language

created by Microsoft with interoperability with many Windows technologies such as

[Component Object Model](https://attack.mitre.org/techniques/T1559/001) and the [Native

API](https://attack.mitre.org/techniques/T1106) through the Windows API. Although tagged

as legacy with no planned future evolutions, VB is integrated and supported in the .NET

Framework and cross-platform .NET Core.(Citation: VB .NET Mar 2020)(Citation: VB

Microsoft) Derivative languages based on VB have also been created, such as Visual Basic

for Applications (VBA) and VBScript. VBA is an event-driven programming language built

into Microsoft Office, as well as several third-party applications.(Citation: Microsoft VBA)

(Citation: Wikipedia VBA) VBA enables documents to contain macros used to automate the

execution of tasks and other functionality on the host. VBScript is a default scripting

language on Windows hosts and can also be used in place of [JavaScript](https://

attack.mitre.org/techniques/T1059/007) on HTML Application (HTA) webpages served to

Internet Explorer (though most modern browsers do not come with VBScript support).

(Citation: Microsoft VBScript) Adversaries may use VB payloads to execute malicious

commands. Common malicious usage includes automating execution of behaviors with

VBScript or embedding VBA content into [Spearphishing Attachment](https://

attack.mitre.org/techniques/T1566/001) payloads (which may also involve [Mark-of-the-

Web Bypass](https://attack.mitre.org/techniques/T1553/005) to enable execution).(Citation:

Default VBS macros Blocking)

Name

T1573

TLP:CLEAR

8 Attack-Pattern

ID

T1573

Description

Adversaries may employ an encryption algorithm to conceal command and control traffic

rather than relying on any inherent protections provided by a communication protocol.

Despite the use of a secure algorithm, these implementations may be vulnerable to

reverse engineering if secret keys are encoded and/or generated within malware samples/

configuration files.

Name

T1059

ID

T1059

Description

Adversaries may abuse command and script interpreters to execute commands, scripts, or

binaries. These interfaces and languages provide ways of interacting with computer

systems and are a common feature across many different platforms. Most systems come

with some built-in command-line interface and scripting capabilities, for example, macOS

and Linux distributions include some flavor of [Unix Shell](https://attack.mitre.org/

techniques/T1059/004) while Windows installations include the [Windows Command Shell]

(https://attack.mitre.org/techniques/T1059/003) and [PowerShell](https://attack.mitre.org/

techniques/T1059/001). There are also cross-platform interpreters such as [Python]

(https://attack.mitre.org/techniques/T1059/006), as well as those commonly associated

with client applications such as [JavaScript](https://attack.mitre.org/techniques/

T1059/007) and [Visual Basic](https://attack.mitre.org/techniques/T1059/005). Adversaries

may abuse these technologies in various ways as a means of executing arbitrary

commands. Commands and scripts can be embedded in [Initial Access](https://

attack.mitre.org/tactics/TA0001) payloads delivered to victims as lure documents or as

secondary payloads downloaded from an existing C2. Adversaries may also execute

commands through interactive terminals/shells, as well as utilize various [Remote

Services](https://attack.mitre.org/techniques/T1021) in order to achieve remote Execution.

TLP:CLEAR

9 Attack-Pattern

(Citation: Powershell Remote Commands)(Citation: Cisco IOS Software Integrity Assurance -

Command History)(Citation: Remote Shell Execution in Python)

Name

T1218

ID

T1218

Description

Adversaries may bypass process and/or signature-based defenses by proxying execution

of malicious content with signed, or otherwise trusted, binaries. Binaries used in this

technique are often Microsoft-signed files, indicating that they have been either

downloaded from Microsoft or are already native in the operating system.(Citation: LOLBAS

Project) Binaries signed with trusted digital certificates can typically execute on Windows

systems protected by digital signature validation. Several Microsoft signed binaries that

are default on Windows installations can be used to proxy execution of other files or

commands. Similarly, on Linux systems adversaries may abuse trusted binaries such as

`split` to proxy execution of malicious commands.(Citation: split man page)(Citation: GTFO

split)

Name

T1055

ID

T1055

Description

Adversaries may inject code into processes in order to evade process-based defenses as

well as possibly elevate privileges. Process injection is a method of executing arbitrary

code in the address space of a separate live process. Running code in the context of

another process may allow access to the process's memory, system/network resources,

TLP:CLEAR

10 Attack-Pattern

and possibly elevated privileges. Execution via process injection may also evade detection

from security products since the execution is masked under a legitimate process. There

are many different ways to inject code into a process, many of which abuse legitimate

functionalities. These implementations exist for every major OS but are typically platform

specific. More sophisticated samples may perform multiple process injections to segment

modules and further evade detection, utilizing named pipes or other inter-process

communication (IPC) mechanisms as a communication channel.

Name

T1555

ID

T1555

Description

Adversaries may search for common password storage locations to obtain user

credentials.(Citation: F-Secure The Dukes) Passwords are stored in several places on a

system, depending on the operating system or application holding the credentials. There

are also specific applications and services that store passwords to make them easier for

users to manage and maintain, such as password managers and cloud secrets vaults. Once

credentials are obtained, they can be used to perform lateral movement and access

restricted information.

Name

T1548.002

ID

T1548.002

Description

Adversaries may bypass UAC mechanisms to elevate process privileges on system.

Windows User Account Control (UAC) allows a program to elevate its privileges (tracked as

TLP:CLEAR

11 Attack-Pattern

integrity levels ranging from low to high) to perform a task under administrator-level

permissions, possibly by prompting the user for confirmation. The impact to the user

ranges from denying the operation under high enforcement to allowing the user to

perform the action if they are in the local administrators group and click through the

prompt or allowing them to enter an administrator password to complete the action.

(Citation: TechNet How UAC Works) If the UAC protection level of a computer is set to

anything but the highest level, certain Windows programs can elevate privileges or execute

some elevated [Component Object Model](https://attack.mitre.org/techniques/T1559/001)

objects without prompting the user through the UAC notification box.(Citation: TechNet

Inside UAC)(Citation: MSDN COM Elevation) An example of this is use of [Rundll32](https://

attack.mitre.org/techniques/T1218/011) to load a specifically crafted DLL which loads an

auto-elevated [Component Object Model](https://attack.mitre.org/techniques/T1559/001)

object and performs a file operation in a protected directory which would typically require

elevated access. Malicious software may also be injected into a trusted process to gain

elevated privileges without prompting a user.(Citation: Davidson Windows) Many methods

have been discovered to bypass UAC. The Github readme page for UACME contains an

extensive list of methods(Citation: Github UACMe) that have been discovered and

implemented, but may not be a comprehensive list of bypasses. Additional bypass

methods are regularly discovered and some used in the wild, such as: * `eventvwr.exe` can

auto-elevate and execute a specified binary or script.(Citation: enigma0x3 Fileless UAC

Bypass)(Citation: Fortinet Fareit) Another bypass is possible through some lateral

movement techniques if credentials for an account with administrator privileges are

known, since UAC is a single system security mechanism, and the privilege or integrity of a

process running on one system will be unknown on remote systems and default to high

integrity.(Citation: SANS UAC Bypass)

TLP:CLEAR

12 Attack-Pattern

External References

• https://www.elastic.co/security-labs/dissecting-remcos-rat-part-four

• https://otx.alienvault.com/pulse/663ce84b45726f40153555b3

TLP:CLEAR

13 External References

https://www.elastic.co/security-labs/dissecting-remcos-rat-part-four
https://otx.alienvault.com/pulse/663ce84b45726f40153555b3

	Intelligence Report
	Table of contents
	Overview
	Entities
	External References

	Overview
	Description
	Confidence

	Content
	Intrusion-Set
	Malware
	Attack-Pattern
	External References

