
NETMANAGEIT

Intelligence Report Threat Actors Deliver Malware via YouTube Video Game Cracks

Table of contents

Overview

•	Description	4
•	Confidence	4
•	Content	5

Entities

•	Indicator	6
•	Malware	8
•	Attack-Pattern	9

Observables

• Url 19

Table of contents

External References

• External References 20

Table of contents

Overview

Description

Proofpoint identified malicious actors distributing information stealers like Vidar, StealC, and Lumma Stealer on YouTube by promoting cracked video games and software. The actors leverage video descriptions containing links leading to malware downloads disguised as cracks or cheats. This activity primarily targets consumer users without enterprise-grade security, exploiting their interest in pirated content. Tactics involve using compromised YouTube accounts with large followings, creating temporary accounts for malware distribution, and impersonating popular cracking groups like Empress. The threat actors often provide instructions to disable antivirus software and use bloated executable files to evade detection. Command and control infrastructure leverages social platforms like Telegram, Steam, and Discord to blend in with regular network traffic.

Confidence

100 / 100

This value represents the confidence in the correctness of the data contained within this report.

4 Overview

Content

N/A

5 Content

Indicator

Name

https://t.me/karl3on

Description

- **Unsafe:** False - **Server:** - **Domain Rank:** 109 - **DNS Valid:** True - **Parking:** False - **Spamming:** False - **Malware:** False - **Phishing:** False - **Suspicious:** False - **Adult:** False - **Category:** Chat and Site Resources - **Domain Age:** {'human': '3 years ago', 'timestamp': 1607874053, 'iso': '2020-12-13T10:40:53-05:00'} - **IPQS: Domain:** t.me - **IPQS: IP Address:** 149.154.167.99

Pattern Type

stix

Pattern

[url:value = 'https://t.me/karl3on']

Name

https://steamcommunity.com/profiles/76561199637071579

Description

```
- **Unsafe:** False - **Server:** - **Domain Rank:** 790 - **DNS Valid:** True - **Parking:** False - **Spamming:** False - **Malware:** False - **Phishing:** False - **Suspicious:** False - **Adult:** False - **Category:** Gaming - **Domain Age:** {'human': '18 years ago',
```

6 Indicator

'timestamp': 1148782133, 'iso': '2006-05-27T22:08:53-04:00'} - **IPQS: Domain:** steamcommunity.com - **IPQS: IP Address:** 23.5.155.205

Pattern Type

stix

Pattern

[url:value = 'https://steamcommunity.com/profiles/76561199637071579']

Name

https://mediafire.com/folder/ol5512r4mova/Setup

Description

```
- **Unsafe:** False - **Server:** cloudflare - **Domain Rank:** 292 - **DNS Valid:** True - **Parking:** False - **Spamming:** False - **Malware:** False - **Phishing:** False - **Suspicious:** False - **Category:** Downloads - **Domain Age:** {'human': '22 years ago', 'timestamp': 1029079876, 'iso': '2002-08-11T11:31:16-04:00'} - **IPQS: Domain:** mediafire.com - **IPQS: IP Address:** 104.16.113.74
```

Pattern Type

stix

Pattern

[url:value = 'https://mediafire.com/folder/ol5512r4mova/Setup']

7 Indicator

Malware

8 Malware

Attack-Pattern

Name	
T1107	
ID	
T1107	
Name	
T1134	
ID	
T1134	

Description

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token. An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. [Token Impersonation/Theft](https://attack.mitre.org/techniques/T1134/001)) or used to spawn a new process (i.e. [Create Process with Token](https://attack.mitre.org/techniques/T1134/002)). An adversary must already be in a privileged user context (i.e. administrator)

to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation) Any standard user can use the `runas` command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.

Name

T1598

ID

T1598

Description

Adversaries may send phishing messages to elicit sensitive information that can be used during targeting. Phishing for information is an attempt to trick targets into divulging information, frequently credentials or other actionable information. Phishing for information is different from [Phishing](https://attack.mitre.org/techniques/T1566) in that the objective is gathering data from the victim rather than executing malicious code. All forms of phishing are electronically delivered social engineering. Phishing can be targeted, known as spearphishing. In spearphishing, a specific individual, company, or industry will be targeted by the adversary. More generally, adversaries can conduct non-targeted phishing, such as in mass credential harvesting campaigns. Adversaries may also try to obtain information directly through the exchange of emails, instant messages, or other electronic conversation means.(Citation: ThreatPost Social Media Phishing)(Citation: TrendMictro Phishing)(Citation: PCMag FakeLogin)(Citation: Sophos Attachment)(Citation: GitHub Phishery) Victims may also receive phishing messages that direct them to call a phone number where the adversary attempts to collect confidential information.(Citation: Avertium callback phishing) Phishing for information frequently involves social engineering techniques, such as posing as a source with a reason to collect information (ex: [Establish Accounts](https://attack.mitre.org/techniques/T1585) or [Compromise Accounts](https://attack.mitre.org/techniques/T1586)) and/or sending multiple, seemingly urgent messages. Another way to accomplish this is by forging or spoofing(Citation: Proofpoint-spoof) the identity of the sender which can be used to fool both the human recipient as well as automated security tools.(Citation: cyberproof-double-bounce) Phishing for information may also involve evasive techniques, such as removing or

manipulating emails or metadata/headers from compromised accounts being abused to send messages (e.g., [Email Hiding Rules](https://attack.mitre.org/techniques/T1564/008)). (Citation: Microsoft OAuth Spam 2022)(Citation: Palo Alto Unit 42 VBA Infostealer 2014)

Name

T1608

ID

T1608

Description

Adversaries may upload, install, or otherwise set up capabilities that can be used during targeting. To support their operations, an adversary may need to take capabilities they developed ([Develop Capabilities](https://attack.mitre.org/techniques/T1587)) or obtained ([Obtain Capabilities](https://attack.mitre.org/techniques/T1588)) and stage them on infrastructure under their control. These capabilities may be staged on infrastructure that was previously purchased/rented by the adversary ([Acquire Infrastructure](https:// attack.mitre.org/techniques/T1583)) or was otherwise compromised by them ([Compromise Infrastructure](https://attack.mitre.org/techniques/T1584)). Capabilities may also be staged on web services, such as GitHub or Pastebin, or on Platform-as-a-Service (PaaS) offerings that enable users to easily provision applications.(Citation: Volexity Ocean Lotus November 2020)(Citation: Dragos Heroku Watering Hole)(Citation: Malwarebytes Heroku Skimmers)(Citation: Netskope GCP Redirection)(Citation: Netskope Cloud Phishing) Staging of capabilities can aid the adversary in a number of initial access and post-compromise behaviors, including (but not limited to): * Staging web resources necessary to conduct [Drive-by Compromise](https://attack.mitre.org/techniques/T1189) when a user browses to a site.(Citation: FireEye CFR Watering Hole 2012)(Citation: Gallagher 2015)(Citation: ATT ScanBox) * Staging web resources for a link target to be used with spearphishing.(Citation: Malwarebytes Silent Librarian October 2020)(Citation: Proofpoint TA407 September 2019) * Uploading malware or tools to a location accessible to a victim network to enable [Ingress Tool Transfer](https://attack.mitre.org/techniques/T1105).(Citation: Volexity Ocean Lotus November 2020) * Installing a previously acquired SSL/TLS certificate to use to encrypt command and control traffic (ex: [Asymmetric Cryptography](https://attack.mitre.org/ techniques/T1573/002) with [Web Protocols](https://attack.mitre.org/techniques/ T1071/001)).(Citation: DigiCert Install SSL Cert)

Name

T1059

ID

T1059

Description

Adversaries may abuse command and script interpreters to execute commands, scripts, or binaries. These interfaces and languages provide ways of interacting with computer systems and are a common feature across many different platforms. Most systems come with some built-in command-line interface and scripting capabilities, for example, macOS and Linux distributions include some flavor of [Unix Shell](https://attack.mitre.org/ techniques/T1059/004) while Windows installations include the [Windows Command Shell] (https://attack.mitre.org/techniques/T1059/003) and [PowerShell](https://attack.mitre.org/ techniques/T1059/001). There are also cross-platform interpreters such as [Python] (https://attack.mitre.org/techniques/T1059/006), as well as those commonly associated with client applications such as [JavaScript](https://attack.mitre.org/techniques/ T1059/007) and [Visual Basic](https://attack.mitre.org/techniques/T1059/005). Adversaries may abuse these technologies in various ways as a means of executing arbitrary commands. Commands and scripts can be embedded in [Initial Access](https:// attack.mitre.org/tactics/TA0001) payloads delivered to victims as lure documents or as secondary payloads downloaded from an existing C2. Adversaries may also execute commands through interactive terminals/shells, as well as utilize various [Remote Services](https://attack.mitre.org/techniques/T1021) in order to achieve remote Execution. (Citation: Powershell Remote Commands)(Citation: Cisco IOS Software Integrity Assurance -Command History)(Citation: Remote Shell Execution in Python)

Name

T1105

ID

T1105

Description

Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as [ftp](https://attack.mitre.org/software/S0095). Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. [Lateral Tool Transfer](https://attack.mitre.org/techniques/T1570)). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, [certutil] (https://attack.mitre.org/software/S0160), and [PowerShell](https://attack.mitre.org/ techniques/T1059/001) commands such as `IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. (Citation: t1105_lolbas) Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Files can also be transferred using various [Web Service](https://attack.mitre.org/techniques/T1102)s as well as native or otherwise present tools on the victim system.(Citation: PTSecurity Cobalt Dec 2016) In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine.(Citation: Dropbox Malware Sync)

Name

T1204

ID

T1204

Description

An adversary may rely upon specific actions by a user in order to gain execution. Users may be subjected to social engineering to get them to execute malicious code by, for example, opening a malicious document file or link. These user actions will typically be observed as follow-on behavior from forms of [Phishing](https://attack.mitre.org/techniques/T1566). While [User Execution](https://attack.mitre.org/techniques/T1204) frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user's desktop hoping that a user will click on it. This activity may also be seen shortly after [Internal Spearphishing](https://attack.mitre.org/techniques/T1534). Adversaries may also deceive

users into performing actions such as enabling [Remote Access Software](https://attack.mitre.org/techniques/T1219), allowing direct control of the system to the adversary, or downloading and executing malware for [User Execution](https://attack.mitre.org/techniques/T1204). For example, tech support scams can be facilitated through [Phishing] (https://attack.mitre.org/techniques/T1566), vishing, or various forms of user interaction. Adversaries can use a combination of these methods, such as spoofing and promoting toll-free numbers or call centers that are used to direct victims to malicious websites, to deliver and execute payloads containing malware or [Remote Access Software](https://attack.mitre.org/techniques/T1219).(Citation: Telephone Attack Delivery)

Name

T1112

ID

T1112

Description

Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution. Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility [Reg](https://attack.mitre.org/software/S0075) may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API. Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/ or be ignored when read via [Reg](https://attack.mitre.org/software/S0075) or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017) The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often [Valid Accounts](https://attack.mitre.org/techniques/ T1078) are required, along with access to the remote system's [SMB/Windows Admin Shares](https://attack.mitre.org/techniques/T1021/002) for RPC communication.

Name

T1218

ID

T1218

Description

Adversaries may bypass process and/or signature-based defenses by proxying execution of malicious content with signed, or otherwise trusted, binaries. Binaries used in this technique are often Microsoft-signed files, indicating that they have been either downloaded from Microsoft or are already native in the operating system.(Citation: LOLBAS Project) Binaries signed with trusted digital certificates can typically execute on Windows systems protected by digital signature validation. Several Microsoft signed binaries that are default on Windows installations can be used to proxy execution of other files or commands. Similarly, on Linux systems adversaries may abuse trusted binaries such as 'split' to proxy execution of malicious commands.(Citation: split man page)(Citation: GTFO split)

Name

T1036

ID

T1036

Description

Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names. Renaming abusable system utilities to evade security monitoring is also a form of [Masquerading](https://attack.mitre.org/techniques/T1036).(Citation: LOLBAS Main Site) Masquerading may also include the use of [Proxy](https://attack.mitre.org/techniques/

T1090) or VPNs to disguise IP addresses, which can allow adversaries to blend in with normal network traffic and bypass conditional access policies or anti-abuse protections.

Name

T1195

ID

T1195

Description

Adversaries may manipulate products or product delivery mechanisms prior to receipt by a final consumer for the purpose of data or system compromise. Supply chain compromise can take place at any stage of the supply chain including: * Manipulation of development tools * Manipulation of a development environment * Manipulation of source code repositories (public or private) * Manipulation of source code in open-source dependencies * Manipulation of software update/distribution mechanisms * Compromised/infected system images (multiple cases of removable media infected at the factory)(Citation: IBM Storwize)(Citation: Schneider Electric USB Malware) * Replacement of legitimate software with modified versions * Sales of modified/counterfeit products to legitimate distributors * Shipment interdiction While supply chain compromise can impact any component of hardware or software, adversaries looking to gain execution have often focused on malicious additions to legitimate software in software distribution or update channels.(Citation: Avast CCleaner3 2018)(Citation: Microsoft Dofoil 2018)(Citation: Command Five SK 2011) Targeting may be specific to a desired victim set or malicious software may be distributed to a broad set of consumers but only move on to additional tactics on specific victims.(Citation: Symantec Elderwood Sept 2012)(Citation: Avast CCleaner3 2018)(Citation: Command Five SK 2011) Popular open source projects that are used as dependencies in many applications may also be targeted as a means to add malicious code to users of the dependency.(Citation: Trendmicro NPM Compromise)

Name

T1140

ID

T1140

Description

Adversaries may use [Obfuscated Files or Information](https://attack.mitre.org/techniques/T1027) to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system. One such example is the use of [certutil](https://attack.mitre.org/software/S0160) to decode a remote access tool portable executable file that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack against Saudi Arabia) Another example is using the Windows `copy /b` command to reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation Sept 2016) Sometimes a user's action may be required to open it for deobfuscation or decryption as part of [User Execution](https://attack.mitre.org/techniques/T1204). The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016)

Name

T1564

ID

T1564

Description

Adversaries may attempt to hide artifacts associated with their behaviors to evade detection. Operating systems may have features to hide various artifacts, such as important system files and administrative task execution, to avoid disrupting user work environments and prevent users from changing files or features on the system.

Adversaries may abuse these features to hide artifacts such as files, directories, user accounts, or other system activity to evade detection.(Citation: Sofacy Komplex Trojan) (Citation: Cybereason OSX Pirrit)(Citation: MalwareBytes ADS July 2015) Adversaries may also attempt to hide artifacts associated with malicious behavior by creating computing regions that are isolated from common security instrumentation, such as through the use of virtualization technology.(Citation: Sophos Ragnar May 2020)

Name

T1489

ID

T1489

Description

Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary's overall objectives to cause damage to the environment. (Citation: Talos Olympic Destroyer 2018) (Citation: Novetta Blockbuster)

Adversaries may accomplish this by disabling individual services of high importance to an organization, such as `MSExchangeIS`, which will make Exchange content inaccessible (Citation: Novetta Blockbuster). In some cases, adversaries may stop or disable many or all services to render systems unusable. (Citation: Talos Olympic Destroyer 2018) Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct [Data Destruction] (https://attack.mitre.org/techniques/T1485) or [Data Encrypted for Impact] (https://attack.mitre.org/techniques/T1486) on the data stores of services like Exchange and SQL Server. (Citation: SecureWorks WannaCry Analysis)

Url

Value

https://t.me/karl3on

https://steamcommunity.com/profiles/76561199637071579

https://mediafire.com/folder/ol5512r4mova/Setup

19 Url

External References

- https://www.proofpoint.com/us/blog/threat-insight/threat-actors-deliver-malware-youtube-video-game-cracks
- https://otx.alienvault.com/pulse/660d415fbda4dbd8494cbf1d

20 External References