Apr 012024

NETMANAGEIT

Intelligence Report
Stories from the SoC Part
1: IDAT Loader to
BruteRatel

@.

02d56281689ec2dlay r P/
o

[T1574.007) { NG

'04.0®©204.002

| 152.89.217.215

3 \ ! a 3
© =g
c5c52331b208cad19dc?... @ I'.

L P
updatenazure §@w~ = —
| -

¢ \§ | b7 LN
% — [T105% T1055 _
:p Brute Ratel% @
o W

5 (== 23 i
[11055.013] T1055.01: % befe0df365f0RDaRDEDSS118efdbcall...

[T1036] T%gayé;gc

[T1106] T1106

TLP:CLEAR

Table of contents

Overview
Description 4
Confidence 4
Content 5
Entities
Indicator 6
Malware 10
Attack-Pattern 1
Observables
Domain-Name 19
Url 20
|Pv4-Addr 21
StixFile 22

Table of contents

External References

External References

TLP:CLEAR

23

Table of contents

TLP:CLEAR

Overview

Description

This report provides an analysis of a recent malware campaign that begins with a drive-by
download of a Rust binary, which then loads the IDAT malware loader. The IDAT loader injects
the SecTop RAT, followed by deployment of the Brute Ratel C4 framework for command and
control. Technical details are provided on the tactics, techniques and procedures used at each
stage of the attack.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

100 / 100

Overview

TLP:CLEAR

N/A

Content

TLP:CLEAR

Indicator

u pdatenazu re.com

Description

- **Unsafe** False - **Server:** N/A - **Domain Rank:** 0 - **DNS Valid:** True -
Parking: False - **Spamming:** False - **Malware:** False - **Phishing:** False -
Suspicious: True - **Adult:** False - **Category:** N/A - **Domain Age:** {'human': 2
months ago! 'timestamp': 1705661589, 'iso": '2024-01-19T05:53:09-05:00'} - **IPQS: Domain:**
updatenazure.com - **IPQS: IP Address:** 205.234.231.176

Pattern Type

stix

Pattern

[domain-name:value = 'updatenazure.com']

https://cdn-network-services-001.com/update/minor/1/release.json

Description

- **Unsafe** False - **Server:** N/A - **Domain Rank:** 0 - **DNS Valid:** True -
Parking: False - **Spamming:** False - **Malware:** False - **Phishing:** False -
Suspicious: True - **Adult:** False - **Category:** N/A - **Domain Age:** {'human": '3

n Indicator

TLP:CLEAR

months ago! 'timestamp': 1705321708, 'iso": '2024-01-15T07:28:28-05:00'} - **IPQS: Domain:**
cdn-network-services-001.com - **IPQS: IP Address:** 193.233.132.129

Pattern Type

stix

Pattern

[url:value = 'https://cdn-network-services-001.com/update/minor/1/release.json']

152.89.217.215

Description

- **Zip Code** N/A - **ISP:** LLC Smart Ape - **ASN:** 56694 - **Qrganization:** LLC Smart
Ape - **|s Crawler:** False - **Timezone:** Europe/Moscow - **Mobile:** False - **Host:**
data.amtp.cloud - **Proxy:** True - **VPN:** True - **TOR:** False - **Active VPN:** False -
Active TOR: False - **Recent Abuse:** True - **Bot Status:** False - **Connection
Type** Premium required. - **Abuse Velocity:** Premium required. - **Country Code:** RU
- **Region:** Moskva - **City:** Moscow - **Latitude:** 55.7522583 - **Longitude:**
37.61547089

Pattern Type

stix

Pattern

[ipv4-addrvalue = 152.89.217.215']

e05e561c5118efdbcal13ca231c527b62e59a4bffae3bd374f7b4fcdd10e7d90

Indicator

TLP:CLEAR

Pattern Type

stix

Pattern

[file:hashes!SHA-256' =
'e05e561c5118efdbcal13ca231c527b62e59a4bffae3bd374f7b4fcdd10e7d90']

€5¢52331b208cad19dc710786€26ac55090ffca937410d76¢53569d731f0bb92

Pattern Type

stix

Pattern

[file:hashes!SHA-256' =
'c5¢52331b208cad19dc710786e€26ac55090ffca937410d76¢53569d731f0bb92']

befe0df365f0e2dc05225470e45fdf03609f098a526d617c478b81ac6bb9o147f

Pattern Type

stix

Pattern

[file:hashes!SHA-256' =
'befe0df365f0e2dc05225470e45fdf03609f098a526d617¢478b81ac6bb9o147f']

n Indicator

TLP:CLEAR

a3a5e7011335a2284e2d4f73fd46411129f0c9276878a054€1932bc50608584b

Pattern Type

stix

Pattern

[file:hashes!SHA-256' =
'a3a5e7011335a2284e2d4f73fd4641F129f0¢c9276878a054¢1932bc50608584b']

02d5e281689ec2d4ab8ac19¢93321a09113e5d8fa39380a7021580ea1887b7a5

Pattern Type

stix

Pattern

[file:hashes!SHA-256' =
'02d5e281689ec2d4ah8ac19c93321a09113e5d8fa39380a7021580ea1887b7a5']

n Indicator

SecTop RAT

IDAT Loader

Brute Ratel C4

Malware

TLP:CLEAR

Attack-Pattern

11189

T1189

Description

Adversaries may gain access to a system through a user visiting a website over the normal
course of browsing. With this technique, the user's web browser is typically targeted for
exploitation, but adversaries may also use compromised websites for non-exploitation
behavior such as acquiring [Application Access Token](https://attack.mitre.org/
techniques/T1550/001). Multiple ways of delivering exploit code to a browser exist (i.e.,
[Drive-by Target](https://attack.mitre.org/techniques/T1608/004)), including: * A legitimate
website is compromised where adversaries have injected some form of malicious code
such as JavaScript, iFrames, and cross-site scripting * Script files served to a legitimate
website from a publicly writeable cloud storage bucket are modified by an adversary *
Malicious ads are paid for and served through legitimate ad providers (i.e., [Malvertising]
(https://attack.mitre.org/techniques/T1583/008)) * Built-in web application interfaces are
leveraged for the insertion of any other kind of object that can be used to display web
content or contain a script that executes on the visiting client (e.g. forum posts, comments,
and other user controllable web content). Often the website used by an adversary is one
visited by a specific community, such as government, a particular industry, or region,
where the goal is to compromise a specific user or set of users based on a shared interest.
This kind of targeted campaign is often referred to a strategic web compromise or watering
hole attack. There are several known examples of this occurring.(Citation: Shadowserver
Strategic Web Compromise) Typical drive-by compromise process: 1. A user visits a website
that is used to host the adversary controlled content. 2. Scripts automatically execute,
typically searching versions of the browser and plugins for a potentially vulnerable

Attack-Pattern

TLP:CLEAR

version. * The user may be required to assist in this process by enabling scripting or active
website components and ignoring warning dialog boxes. 3. Upon finding a vulnerable
version, exploit code is delivered to the browser. 4. If exploitation is successful, then it will
give the adversary code execution on the user's system unless other protections are in
place. * In some cases a second visit to the website after the initial scan is required before
exploit code is delivered. Unlike [Exploit Public-Facing Application](https://
attack.mitre.org/techniques/T1190), the focus of this technique is to exploit software on a
client endpoint upon visiting a website. This will commonly give an adversary access to
systems on the internal network instead of external systems that may be in a DMZ.
Adversaries may also use compromised websites to deliver a user to a malicious
application designed to [Steal Application Access Token](https://attack.mitre.org/
techniques/T1528)s, like OAuth tokens, to gain access to protected applications and
information. These malicious applications have been delivered through popups on
legitimate websites.(Citation: Volexity OceanLotus Nov 2017)

T1055.013

T1055.013

Description

Adversaries may inject malicious code into process via process doppelganging in order to
evade process-based defenses as well as possibly elevate privileges. Process
doppelganging is a method of executing arbitrary code in the address space of a separate
live process. Windows Transactional NTFS (TxF) was introduced in Vista as a method to
perform safe file operations. (Citation: Microsoft TxF) To ensure data integrity, TXF enables
only one transacted handle to write to a file at a given time. Until the write handle
transaction is terminated, all other handles are isolated from the writer and may only read
the committed version of the file that existed at the time the handle was opened.
(Citation: Microsoft Basic TxF Concepts) To avoid corruption, TxF performs an automatic
rollback if the system or application fails during a write transaction. (Citation: Microsoft
Where to use TxF) Although deprecated, the TxF application programming interface (API) is
still enabled as of Windows 10. (Citation: BlackHat Process Doppelganging Dec 2017)
Adversaries may abuse TxF to a perform a file-less variation of [Process Injection](https://
attack.mitre.org/techniques/T1055). Similar to [Process Hollowing](https://attack.mitre.org/
techniques/T1055/012), process doppelganging involves replacing the memory of a
legitimate process, enabling the veiled execution of malicious code that may evade

Attack-Pattern

TLP:CLEAR

defenses and detection. Process doppelganging's use of TxF also avoids the use of highly-
monitored API functions such as ‘NtUnmapViewOfSection’, VirtualProtectEx’, and
“SetThreadContext”. (Citation: BlackHat Process Doppelganging Dec 2017) Process
Doppelganging is implemented in 4 steps (Citation: BlackHat Process Doppelganging Dec
2017): * Transact — Create a TxF transaction using a legitimate executable then overwrite
the file with malicious code. These changes will be isolated and only visible within the
context of the transaction. * Load — Create a shared section of memory and load the
malicious executable. * Rollback - Undo changes to original executable, effectively
removing malicious code from the file system. * Animate - Create a process from the
tainted section of memory and initiate execution. This behavior will likely not result in
elevated privileges since the injected process was spawned from (and thus inherits the
security context) of the injecting process. However, execution via process doppelganging

may evade detection from security products since the execution is masked under a
legitimate process.

T1497.003

T1497.003

Description

Adversaries may employ various time-based methods to detect and avoid virtualization
and analysis environments. This may include enumerating time-based properties, such as
uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual
machine environment (VME) or sandbox, specifically those that are automated or only
operate for a limited amount of time. Adversaries may employ various time-based
evasions, such as delaying malware functionality upon initial execution using
programmatic sleep commands or native system scheduling functionality (ex: [Scheduled
Task/Job](https://attack.mitre.org/techniques/T1053)). Delays may also be based on
waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ
scheduled [Multi-Stage Channels](https://attack.mitre.org/techniques/T1104) to avoid
analysis and scrutiny.(Citation: Deloitte Environment Awareness) Benign commands or
other operations may also be used to delay malware execution. Loops or otherwise
needless repetitions of commands, such as [Ping](https://attack.mitre.org/software/
S0097)s, may be used to delay malware execution and potentially exceed time thresholds
of automated analysis environments.(Citation: Revil Independence Day)(Citation: Netskope
Nitol) Another variation, commonly referred to as APl hammering, involves making various

Attack-Pattern

TLP:CLEAR

calls to [Native API](https://attack.mitre.org/techniques/T1106) functions in order to delay
execution (while also potentially overloading analysis environments with junk data).
(Citation: Joe Sec Nymaim)(Citation: Joe Sec Trickbot) Adversaries may also use time as a
metric to detect sandboxes and analysis environments, particularly those that attempt to
manipulate time mechanisms to simulate longer elapses of time. For example, an
adversary may be able to identify a sandbox accelerating time by sampling and calculating
the expected value for an environment's timestamp before and after execution of a sleep
function.(Citation: ISACA Malware Tricks)

T1055

T1055

Description

Adversaries may inject code into processes in order to evade process-based defenses as
well as possibly elevate privileges. Process injection is a method of executing arbitrary
code in the address space of a separate live process. Running code in the context of
another process may allow access to the process's memory, system/network resources,
and possibly elevated privileges. Execution via process injection may also evade detection
from security products since the execution is masked under a legitimate process. There
are many different ways to inject code into a process, many of which abuse legitimate

functionalities. These implementations exist for every major OS but are typically platform
specific. More sophisticated samples may perform multiple process injections to segment
modules and further evade detection, utilizing named pipes or other inter-process
communication (IPC) mechanisms as a communication channel.

T1036

11036

Attack-Pattern

TLP:CLEAR

Description

Adversaries may attempt to manipulate features of their artifacts to make them appear
legitimate or benign to users and/or security tools. Masquerading occurs when the name
or location of an object, legitimate or malicious, is manipulated or abused for the sake of
evading defenses and observation. This may include manipulating file metadata, tricking
users into misidentifying the file type, and giving legitimate task or service names.
Renaming abusable system utilities to evade security monitoring is also a form of
[Masquerading](https://attack.mitre.org/techniques/T1036).(Citation: LOLBAS Main Site)
Masquerading may also include the use of [Proxy](https://attack.mitre.org/techniques/
T1090) or VPNs to disguise IP addresses, which can allow adversaries to blend in with
normal network traffic and bypass conditional access policies or anti-abuse protections.

11140

11140

Description

Adversaries may use [Obfuscated Files or Information](https://attack.mitre.org/
techniques/T1027) to hide artifacts of an intrusion from analysis. They may require
separate mechanisms to decode or deobfuscate that information depending on how they
intend to use it. Methods for doing that include built-in functionality of malware or by
using utilities present on the system. One such example is the use of [certutil](https://
attack.mitre.org/software/S0160) to decode a remote access tool portable executable file
that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack
against Saudi Arabia) Another example is using the Windows “copy /b~ command to
reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation
Sept 2016) Sometimes a user's action may be required to open it for deobfuscation or
decryption as part of [User Execution](https://attack.mitre.org/techniques/T1204). The user
may also be required to input a password to open a password protected compressed/
encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November
2016)

Attack-Pattern

TLP:CLEAR

11106

T1106

Description

Adversaries may interact with the native OS application programming interface (API) to
execute behaviors. Native APIs provide a controlled means of calling low-level OS services
within the kernel, such as those involving hardware/devices, memory, and processes.
(Citation: NT APl Windows)(Citation: Linux Kernel API) These native APIs are leveraged by
the OS during system boot (when other system components are not yet initialized) as well
as carrying out tasks and requests during routine operations. Adversaries may abuse these
OS API functions as a means of executing behaviors. Similar to [Command and Scripting
Interpreter](https://attack.mitre.org/techniques/T1059), the native API and its hierarchy of
interfaces provide mechanisms to interact with and utilize various components of a
victimized system. Native API functions (such as "NtCreateProcess’) may be directed
invoked via system calls / syscalls, but these features are also often exposed to user-
mode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation:
CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the
Windows API “CreateProcess()” or GNU “fork()" will allow programs and scripts to start other
processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers
to execute a binary, run a CLI command, load modules, etc. as thousands of similar API
functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC)
(Citation: GLIBC) Higher level software frameworks, such as Microsoft NET and macOS
Cocoa, are also available to interact with native APIs. These frameworks typically provide
language wrappers/abstractions to API functionalities and are designed for ease-of-use/
portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS
Cocoa)(Citation: macOS Foundation) Adversaries may use assembly to directly or in-
directly invoke syscalls in an attempt to subvert defensive sensors and detection
signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also
attempt to tamper with sensors and defensive tools associated with APl monitoring, such
as unhooking monitored functions via [Disable or Modify Tools](https://attack.mitre.org/
techniques/T1562/001).

T1574.001

Attack-Pattern

TLP:CLEAR

T1574.001

Description

Adversaries may execute their own malicious payloads by hijacking the search order used
to load DLLs. Windows systems use a common method to look for required DLLs to load
into a program. (Citation: Microsoft Dynamic Link Library Search Order)(Citation: FireEye
Hijacking July 2010) Hijacking DLL loads may be for the purpose of establishing persistence
as well as elevating privileges and/or evading restrictions on file execution. There are
many ways an adversary can hijack DLL loads. Adversaries may plant trojan dynamic-link
library files (DLLs) in a directory that will be searched before the location of a legitimate
library that will be requested by a program, causing Windows to load their malicious
library when it is called for by the victim program. Adversaries may also perform DLL
preloading, also called binary planting attacks, (Citation: OWASP Binary Planting) by
placing a malicious DLL with the same name as an ambiguously specified DLL in a location
that Windows searches before the legitimate DLL. Often this location is the current
working directory of the program.(Citation: FireEye fxsst June 2011) Remote DLL preloading
attacks occur when a program sets its current directory to a remote location such as a
Web share before loading a DLL. (Citation: Microsoft Security Advisory 2269637) Adversaries
may also directly modify the search order via DLL redirection, which after being enabled
(in the Registry and creation of a redirection file) may cause a program to load a different
DLL.(Citation: Microsoft Dynamic-Link Library Redirection)(Citation: Microsoft Manifests)
(Citation: FireEye DLL Search Order Hijacking) If a search order-vulnerable program is
configured to run at a higher privilege level, then the adversary-controlled DLL that is
loaded will also be executed at the higher level. In this case, the technique could be used
for privilege escalation from user to administrator or SYSTEM or from administrator to
SYSTEM, depending on the program. Programs that fall victim to path hijacking may appear
to behave normally because malicious DLLs may be configured to also load the legitimate
DLLs they were meant to replace.

T1204.002

T1204.002

Attack-Pattern

TLP:CLEAR

An adversary may rely upon a user opening a malicious file in order to gain execution.
Users may be subjected to social engineering to get them to open a file that will lead to
code execution. This user action will typically be observed as follow-on behavior from
[Spearphishing Attachment](https://attack.mitre.org/techniques/T1566/001). Adversaries
may use several types of files that require a user to execute them, including

dogc, .pdf, xls, .rtf, .scr, .exe, .Ink, .pif, and .cpl. Adversaries may employ various forms of
[Masquerading](https://attack.mitre.org/techniques/T1036) and [Obfuscated Files or
Information](https://attack.mitre.org/techniques/T1027) to increase the likelihood that a
user will open and successfully execute a malicious file. These methods may include using
a familiar naming convention and/or password protecting the file and supplying
instructions to a user on how to open it.(Citation: Password Protected Word Docs) While
[Malicious File](https://attack.mitre.org/techniques/T1204/002) frequently occurs shortly
after Initial Access it may occur at other phases of an intrusion, such as when an adversary
places a file in a shared directory or on a user's desktop hoping that a user will click on it.
This activity may also be seen shortly after [Internal Spearphishing](https://
attack.mitre.org/techniques/T1534).

Attack-Pattern

TLP:CLEAR

Domain-Name

u pdatenazu re.com

Domain-Name

TLP:CLEAR

https://cdn-network-services-001.com/update/minor/1/release.json

TLP:CLEAR

IPv4-Addr

152.89.217.215

e

TLP:CLEAR

StixFile

e05e561c5118efdbcal13ca231c527b62e59a4bffae3bd374f7b4fcdd10e7d90

€5¢52331b208cad19dc710786e26ac55090ffca937410d76¢53569d731f0bb92

a3a5e7011335a2284e2d4f73fd46411129f0c9276878a054€1932bc50608584b

befe0df365f0e2dc05225470e45fdf03609f098a526d617c478b81ac6bb9o147f

02d5e281689ec2d4abh8ac19¢93321a09113e5d8fa39380a7021580ea1887b7a5

TLP:CLEAR

External References

https://www.rapid7Z.com/blog/post/2024/03/28/stories-from-the-soc-part-1-idat-loader-to-
bruteratel/

https://otx.alienvault.com/pulse/660a7cele59c73f5e5e2ef0a

External References

https://www.rapid7.com/blog/post/2024/03/28/stories-from-the-soc-part-1-idat-loader-to-bruteratel/
https://www.rapid7.com/blog/post/2024/03/28/stories-from-the-soc-part-1-idat-loader-to-bruteratel/
https://otx.alienvault.com/pulse/660a7ce1e59c73f5e5e2ef0a

	Intelligence Report
	Table of contents
	Overview
	Entities
	Observables
	External References

	Overview
	Description
	Confidence

	Content
	Indicator
	Malware
	Attack-Pattern
	Domain-Name
	Url
	IPv4-Addr
	StixFile
	External References

