
Apr 01 2024

Intelligence Report
Stories from the SoC Part
1: IDAT Loader to
BruteRatel

 N/A

 N/A

 N/A

 N/A

 info@netmanageit.com

 https://www.netmanageit.com

1

4

4

5

6

10

11

19

20

21

22

Table of contents

Overview

• Description

• Confidence

• Content

Entities

• Indicator

• Malware

• Attack-Pattern

Observables

• Domain-Name

• Url

• IPv4-Addr

• StixFile

TLP:CLEAR

2 Table of contents

23

External References

• External References

TLP:CLEAR

3 Table of contents

Overview

Description

This report provides an analysis of a recent malware campaign that begins with a drive-by

download of a Rust binary, which then loads the IDAT malware loader. The IDAT loader injects

the SecTop RAT, followed by deployment of the Brute Ratel C4 framework for command and

control. Technical details are provided on the tactics, techniques and procedures used at each

stage of the attack.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

100 / 100

TLP:CLEAR

4 Overview

Content

N/A

TLP:CLEAR

5 Content

Indicator

Name

updatenazure.com

Description

- **Unsafe:** False - **Server:** N/A - **Domain Rank:** 0 - **DNS Valid:** True -

Parking: False - **Spamming:** False - **Malware:** False - **Phishing:** False -

Suspicious: True - **Adult:** False - **Category:** N/A - **Domain Age:** {'human': '2

months ago', 'timestamp': 1705661589, 'iso': '2024-01-19T05:53:09-05:00'} - **IPQS: Domain:**

updatenazure.com - **IPQS: IP Address:** 205.234.231.176

Pattern Type

stix

Pattern

[domain-name:value = 'updatenazure.com']

Name

https://cdn-network-services-001.com/update/minor/1/release.json

Description

- **Unsafe:** False - **Server:** N/A - **Domain Rank:** 0 - **DNS Valid:** True -

Parking: False - **Spamming:** False - **Malware:** False - **Phishing:** False -

Suspicious: True - **Adult:** False - **Category:** N/A - **Domain Age:** {'human': '3

TLP:CLEAR

6 Indicator

months ago', 'timestamp': 1705321708, 'iso': '2024-01-15T07:28:28-05:00'} - **IPQS: Domain:**

cdn-network-services-001.com - **IPQS: IP Address:** 193.233.132.129

Pattern Type

stix

Pattern

[url:value = 'https://cdn-network-services-001.com/update/minor/1/release.json']

Name

152.89.217.215

Description

- **Zip Code:** N/A - **ISP:** LLC Smart Ape - **ASN:** 56694 - **Organization:** LLC Smart

Ape - **Is Crawler:** False - **Timezone:** Europe/Moscow - **Mobile:** False - **Host:**

data.amtp.cloud - **Proxy:** True - **VPN:** True - **TOR:** False - **Active VPN:** False -

Active TOR: False - **Recent Abuse:** True - **Bot Status:** False - **Connection

Type:** Premium required. - **Abuse Velocity:** Premium required. - **Country Code:** RU

- **Region:** Moskva - **City:** Moscow - **Latitude:** 55.7522583 - **Longitude:**

37.61547089

Pattern Type

stix

Pattern

[ipv4-addr:value = '152.89.217.215']

Name

e05e561c5118efdbca113ca231c527b62e59a4bffae3bd374f7b4fcdd10e7d90

TLP:CLEAR

7 Indicator

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'e05e561c5118efdbca113ca231c527b62e59a4bffae3bd374f7b4fcdd10e7d90']

Name

c5c52331b208cad19dc710786e26ac55090ffca937410d76c53569d731f0bb92

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'c5c52331b208cad19dc710786e26ac55090ffca937410d76c53569d731f0bb92']

Name

befe0df365f0e2dc05225470e45fdf03609f098a526d617c478b81ac6bb9147f

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'befe0df365f0e2dc05225470e45fdf03609f098a526d617c478b81ac6bb9147f']

TLP:CLEAR

8 Indicator

Name

a3a5e7011335a2284e2d4f73fd464ff129f0c9276878a054c1932bc50608584b

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'a3a5e7011335a2284e2d4f73fd464ff129f0c9276878a054c1932bc50608584b']

Name

02d5e281689ec2d4ab8ac19c93321a09113e5d8fa39380a7021580ea1887b7a5

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'02d5e281689ec2d4ab8ac19c93321a09113e5d8fa39380a7021580ea1887b7a5']

TLP:CLEAR

9 Indicator

Malware

Name

SecTop RAT

Name

IDAT Loader

Name

Brute Ratel C4

TLP:CLEAR

10 Malware

Attack-Pattern

Name

T1189

ID

T1189

Description

Adversaries may gain access to a system through a user visiting a website over the normal

course of browsing. With this technique, the user's web browser is typically targeted for

exploitation, but adversaries may also use compromised websites for non-exploitation

behavior such as acquiring [Application Access Token](https://attack.mitre.org/

techniques/T1550/001). Multiple ways of delivering exploit code to a browser exist (i.e.,

[Drive-by Target](https://attack.mitre.org/techniques/T1608/004)), including: * A legitimate

website is compromised where adversaries have injected some form of malicious code

such as JavaScript, iFrames, and cross-site scripting * Script files served to a legitimate

website from a publicly writeable cloud storage bucket are modified by an adversary *

Malicious ads are paid for and served through legitimate ad providers (i.e., [Malvertising]

(https://attack.mitre.org/techniques/T1583/008)) * Built-in web application interfaces are

leveraged for the insertion of any other kind of object that can be used to display web

content or contain a script that executes on the visiting client (e.g. forum posts, comments,

and other user controllable web content). Often the website used by an adversary is one

visited by a specific community, such as government, a particular industry, or region,

where the goal is to compromise a specific user or set of users based on a shared interest.

This kind of targeted campaign is often referred to a strategic web compromise or watering

hole attack. There are several known examples of this occurring.(Citation: Shadowserver

Strategic Web Compromise) Typical drive-by compromise process: 1. A user visits a website

that is used to host the adversary controlled content. 2. Scripts automatically execute,

typically searching versions of the browser and plugins for a potentially vulnerable

TLP:CLEAR

11 Attack-Pattern

version. * The user may be required to assist in this process by enabling scripting or active

website components and ignoring warning dialog boxes. 3. Upon finding a vulnerable

version, exploit code is delivered to the browser. 4. If exploitation is successful, then it will

give the adversary code execution on the user's system unless other protections are in

place. * In some cases a second visit to the website after the initial scan is required before

exploit code is delivered. Unlike [Exploit Public-Facing Application](https://

attack.mitre.org/techniques/T1190), the focus of this technique is to exploit software on a

client endpoint upon visiting a website. This will commonly give an adversary access to

systems on the internal network instead of external systems that may be in a DMZ.

Adversaries may also use compromised websites to deliver a user to a malicious

application designed to [Steal Application Access Token](https://attack.mitre.org/

techniques/T1528)s, like OAuth tokens, to gain access to protected applications and

information. These malicious applications have been delivered through popups on

legitimate websites.(Citation: Volexity OceanLotus Nov 2017)

Name

T1055.013

ID

T1055.013

Description

Adversaries may inject malicious code into process via process doppelgänging in order to

evade process-based defenses as well as possibly elevate privileges. Process

doppelgänging is a method of executing arbitrary code in the address space of a separate

live process. Windows Transactional NTFS (TxF) was introduced in Vista as a method to

perform safe file operations. (Citation: Microsoft TxF) To ensure data integrity, TxF enables

only one transacted handle to write to a file at a given time. Until the write handle

transaction is terminated, all other handles are isolated from the writer and may only read

the committed version of the file that existed at the time the handle was opened.

(Citation: Microsoft Basic TxF Concepts) To avoid corruption, TxF performs an automatic

rollback if the system or application fails during a write transaction. (Citation: Microsoft

Where to use TxF) Although deprecated, the TxF application programming interface (API) is

still enabled as of Windows 10. (Citation: BlackHat Process Doppelgänging Dec 2017)

Adversaries may abuse TxF to a perform a file-less variation of [Process Injection](https://

attack.mitre.org/techniques/T1055). Similar to [Process Hollowing](https://attack.mitre.org/

techniques/T1055/012), process doppelgänging involves replacing the memory of a

legitimate process, enabling the veiled execution of malicious code that may evade

TLP:CLEAR

12 Attack-Pattern

defenses and detection. Process doppelgänging's use of TxF also avoids the use of highly-

monitored API functions such as `NtUnmapViewOfSection`, `VirtualProtectEx`, and

`SetThreadContext`. (Citation: BlackHat Process Doppelgänging Dec 2017) Process

Doppelgänging is implemented in 4 steps (Citation: BlackHat Process Doppelgänging Dec

2017): * Transact – Create a TxF transaction using a legitimate executable then overwrite

the file with malicious code. These changes will be isolated and only visible within the

context of the transaction. * Load – Create a shared section of memory and load the

malicious executable. * Rollback – Undo changes to original executable, effectively

removing malicious code from the file system. * Animate – Create a process from the

tainted section of memory and initiate execution. This behavior will likely not result in

elevated privileges since the injected process was spawned from (and thus inherits the

security context) of the injecting process. However, execution via process doppelgänging

may evade detection from security products since the execution is masked under a

legitimate process.

Name

T1497.003

ID

T1497.003

Description

Adversaries may employ various time-based methods to detect and avoid virtualization

and analysis environments. This may include enumerating time-based properties, such as

uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual

machine environment (VME) or sandbox, specifically those that are automated or only

operate for a limited amount of time. Adversaries may employ various time-based

evasions, such as delaying malware functionality upon initial execution using

programmatic sleep commands or native system scheduling functionality (ex: [Scheduled

Task/Job](https://attack.mitre.org/techniques/T1053)). Delays may also be based on

waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ

scheduled [Multi-Stage Channels](https://attack.mitre.org/techniques/T1104) to avoid

analysis and scrutiny.(Citation: Deloitte Environment Awareness) Benign commands or

other operations may also be used to delay malware execution. Loops or otherwise

needless repetitions of commands, such as [Ping](https://attack.mitre.org/software/

S0097)s, may be used to delay malware execution and potentially exceed time thresholds

of automated analysis environments.(Citation: Revil Independence Day)(Citation: Netskope

Nitol) Another variation, commonly referred to as API hammering, involves making various

TLP:CLEAR

13 Attack-Pattern

calls to [Native API](https://attack.mitre.org/techniques/T1106) functions in order to delay

execution (while also potentially overloading analysis environments with junk data).

(Citation: Joe Sec Nymaim)(Citation: Joe Sec Trickbot) Adversaries may also use time as a

metric to detect sandboxes and analysis environments, particularly those that attempt to

manipulate time mechanisms to simulate longer elapses of time. For example, an

adversary may be able to identify a sandbox accelerating time by sampling and calculating

the expected value for an environment's timestamp before and after execution of a sleep

function.(Citation: ISACA Malware Tricks)

Name

T1055

ID

T1055

Description

Adversaries may inject code into processes in order to evade process-based defenses as

well as possibly elevate privileges. Process injection is a method of executing arbitrary

code in the address space of a separate live process. Running code in the context of

another process may allow access to the process's memory, system/network resources,

and possibly elevated privileges. Execution via process injection may also evade detection

from security products since the execution is masked under a legitimate process. There

are many different ways to inject code into a process, many of which abuse legitimate

functionalities. These implementations exist for every major OS but are typically platform

specific. More sophisticated samples may perform multiple process injections to segment

modules and further evade detection, utilizing named pipes or other inter-process

communication (IPC) mechanisms as a communication channel.

Name

T1036

ID

T1036

TLP:CLEAR

14 Attack-Pattern

Description

Adversaries may attempt to manipulate features of their artifacts to make them appear

legitimate or benign to users and/or security tools. Masquerading occurs when the name

or location of an object, legitimate or malicious, is manipulated or abused for the sake of

evading defenses and observation. This may include manipulating file metadata, tricking

users into misidentifying the file type, and giving legitimate task or service names.

Renaming abusable system utilities to evade security monitoring is also a form of

[Masquerading](https://attack.mitre.org/techniques/T1036).(Citation: LOLBAS Main Site)

Masquerading may also include the use of [Proxy](https://attack.mitre.org/techniques/

T1090) or VPNs to disguise IP addresses, which can allow adversaries to blend in with

normal network traffic and bypass conditional access policies or anti-abuse protections.

Name

T1140

ID

T1140

Description

Adversaries may use [Obfuscated Files or Information](https://attack.mitre.org/

techniques/T1027) to hide artifacts of an intrusion from analysis. They may require

separate mechanisms to decode or deobfuscate that information depending on how they

intend to use it. Methods for doing that include built-in functionality of malware or by

using utilities present on the system. One such example is the use of [certutil](https://

attack.mitre.org/software/S0160) to decode a remote access tool portable executable file

that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack

against Saudi Arabia) Another example is using the Windows `copy /b` command to

reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation

Sept 2016) Sometimes a user's action may be required to open it for deobfuscation or

decryption as part of [User Execution](https://attack.mitre.org/techniques/T1204). The user

may also be required to input a password to open a password protected compressed/

encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November

2016)

Name

TLP:CLEAR

15 Attack-Pattern

T1106

ID

T1106

Description

Adversaries may interact with the native OS application programming interface (API) to

execute behaviors. Native APIs provide a controlled means of calling low-level OS services

within the kernel, such as those involving hardware/devices, memory, and processes.

(Citation: NT API Windows)(Citation: Linux Kernel API) These native APIs are leveraged by

the OS during system boot (when other system components are not yet initialized) as well

as carrying out tasks and requests during routine operations. Adversaries may abuse these

OS API functions as a means of executing behaviors. Similar to [Command and Scripting

Interpreter](https://attack.mitre.org/techniques/T1059), the native API and its hierarchy of

interfaces provide mechanisms to interact with and utilize various components of a

victimized system. Native API functions (such as `NtCreateProcess`) may be directed

invoked via system calls / syscalls, but these features are also often exposed to user-

mode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation:

CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the

Windows API `CreateProcess()` or GNU `fork()` will allow programs and scripts to start other

processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers

to execute a binary, run a CLI command, load modules, etc. as thousands of similar API

functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC)

(Citation: GLIBC) Higher level software frameworks, such as Microsoft .NET and macOS

Cocoa, are also available to interact with native APIs. These frameworks typically provide

language wrappers/abstractions to API functionalities and are designed for ease-of-use/

portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS

Cocoa)(Citation: macOS Foundation) Adversaries may use assembly to directly or in-

directly invoke syscalls in an attempt to subvert defensive sensors and detection

signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also

attempt to tamper with sensors and defensive tools associated with API monitoring, such

as unhooking monitored functions via [Disable or Modify Tools](https://attack.mitre.org/

techniques/T1562/001).

Name

T1574.001

TLP:CLEAR

16 Attack-Pattern

ID

T1574.001

Description

Adversaries may execute their own malicious payloads by hijacking the search order used

to load DLLs. Windows systems use a common method to look for required DLLs to load

into a program. (Citation: Microsoft Dynamic Link Library Search Order)(Citation: FireEye

Hijacking July 2010) Hijacking DLL loads may be for the purpose of establishing persistence

as well as elevating privileges and/or evading restrictions on file execution. There are

many ways an adversary can hijack DLL loads. Adversaries may plant trojan dynamic-link

library files (DLLs) in a directory that will be searched before the location of a legitimate

library that will be requested by a program, causing Windows to load their malicious

library when it is called for by the victim program. Adversaries may also perform DLL

preloading, also called binary planting attacks, (Citation: OWASP Binary Planting) by

placing a malicious DLL with the same name as an ambiguously specified DLL in a location

that Windows searches before the legitimate DLL. Often this location is the current

working directory of the program.(Citation: FireEye fxsst June 2011) Remote DLL preloading

attacks occur when a program sets its current directory to a remote location such as a

Web share before loading a DLL. (Citation: Microsoft Security Advisory 2269637) Adversaries

may also directly modify the search order via DLL redirection, which after being enabled

(in the Registry and creation of a redirection file) may cause a program to load a different

DLL.(Citation: Microsoft Dynamic-Link Library Redirection)(Citation: Microsoft Manifests)

(Citation: FireEye DLL Search Order Hijacking) If a search order-vulnerable program is

configured to run at a higher privilege level, then the adversary-controlled DLL that is

loaded will also be executed at the higher level. In this case, the technique could be used

for privilege escalation from user to administrator or SYSTEM or from administrator to

SYSTEM, depending on the program. Programs that fall victim to path hijacking may appear

to behave normally because malicious DLLs may be configured to also load the legitimate

DLLs they were meant to replace.

Name

T1204.002

ID

T1204.002

TLP:CLEAR

17 Attack-Pattern

Description

An adversary may rely upon a user opening a malicious file in order to gain execution.

Users may be subjected to social engineering to get them to open a file that will lead to

code execution. This user action will typically be observed as follow-on behavior from

[Spearphishing Attachment](https://attack.mitre.org/techniques/T1566/001). Adversaries

may use several types of files that require a user to execute them, including

.doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl. Adversaries may employ various forms of

[Masquerading](https://attack.mitre.org/techniques/T1036) and [Obfuscated Files or

Information](https://attack.mitre.org/techniques/T1027) to increase the likelihood that a

user will open and successfully execute a malicious file. These methods may include using

a familiar naming convention and/or password protecting the file and supplying

instructions to a user on how to open it.(Citation: Password Protected Word Docs) While

[Malicious File](https://attack.mitre.org/techniques/T1204/002) frequently occurs shortly

after Initial Access it may occur at other phases of an intrusion, such as when an adversary

places a file in a shared directory or on a user's desktop hoping that a user will click on it.

This activity may also be seen shortly after [Internal Spearphishing](https://

attack.mitre.org/techniques/T1534).

TLP:CLEAR

18 Attack-Pattern

Domain-Name

Value

updatenazure.com

TLP:CLEAR

19 Domain-Name

Url

Value

https://cdn-network-services-001.com/update/minor/1/release.json

TLP:CLEAR

20 Url

IPv4-Addr

Value

152.89.217.215

TLP:CLEAR

21 IPv4-Addr

StixFile

Value

e05e561c5118efdbca113ca231c527b62e59a4bffae3bd374f7b4fcdd10e7d90

c5c52331b208cad19dc710786e26ac55090ffca937410d76c53569d731f0bb92

a3a5e7011335a2284e2d4f73fd464ff129f0c9276878a054c1932bc50608584b

befe0df365f0e2dc05225470e45fdf03609f098a526d617c478b81ac6bb9147f

02d5e281689ec2d4ab8ac19c93321a09113e5d8fa39380a7021580ea1887b7a5

TLP:CLEAR

22 StixFile

External References

• https://www.rapid7.com/blog/post/2024/03/28/stories-from-the-soc-part-1-idat-loader-to-

bruteratel/

• https://otx.alienvault.com/pulse/660a7ce1e59c73f5e5e2ef0a

TLP:CLEAR

23 External References

https://www.rapid7.com/blog/post/2024/03/28/stories-from-the-soc-part-1-idat-loader-to-bruteratel/
https://www.rapid7.com/blog/post/2024/03/28/stories-from-the-soc-part-1-idat-loader-to-bruteratel/
https://otx.alienvault.com/pulse/660a7ce1e59c73f5e5e2ef0a

	Intelligence Report
	Table of contents
	Overview
	Entities
	Observables
	External References

	Overview
	Description
	Confidence

	Content
	Indicator
	Malware
	Attack-Pattern
	Domain-Name
	Url
	IPv4-Addr
	StixFile
	External References

