Feb 05 2024

NETMANAGEIT

Intelligence Report
Smargaft Harnesses
EtherHiding for Stealthy C2
Hosting

TLP:CLEAR

Table of contents

Overview
Description 4
Confidence 4
Content 5
Entities
Indicator 6
Vulnerability 11
Malware 12
Attack-Pattern 13
Observables
StixFile 29
|Pv4-Addr 30

Table of contents

External References

External References

TLP:CLEAR

31

Table of contents

TLP:CLEAR

Overview

Description

Smargaft uses the Binance Smart Chain to host commands and control(C2) server, and it
spreads through Shell scripts to keep itself going. Because of its smart use of contracts and
Gafgyt's methods, we've decided to call it Smargaft. It mainly does DDoS attacks, runs system
commands, and lets users connect anonymously using socks5 proxy.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

15 / 100

Overview

TLP:CLEAR

N/A

Content

TLP:CLEAR

Indicator

9ebcac15e36dd79439d5f92febf1933e0a68e75cc1e9eech6369e4h33172949

Description

SUSP_ELF_LNX_UPX_Compressed_File SHA256 of 7f741495f14c828c20db4de6251673fd

Pattern Type

stix

Pattern

[file:hashes!SHA-256' =
'9ebcac15e36dd79439d5f92febf1933e0a68e75cc1e9eech6369e4h3317€2949']

94.103188.167

Description

- **Zip Code** N/A - **|SP:** Alexhost - **ASN:** 200019 - **Qrganization:** Alexhost - **Is
Crawler:** False - **Timezone:** Europe/Moscow - **Mobile:** False - **Host:** node-2-md
- **Proxy:** True - **VPN:** True - **TOR:** False - **Active VPN:** False - **Active TOR:**
False - **Recent Abuse:** False - **Bot Status:** False - **Connection Type:** Premium

n Indicator

TLP:CLEAR

required. - **Abuse Velocity:** Premium required. - **Country Code:** RU - **Region:**
Moscow - **City:** Moscow - **Latitude:** 55.75 - **Longitude:** 37.62

Pattern Type

stix

Pattern

[ipv4-addr:value = '94103188.167']

45.95146.93

Description

- **7ip Code** N/A - **ISP:** Alsycon - **ASN:** 49870 - **Organization:** Alsycon - **Is
Crawler:** False - **Timezone:** Europe/Amsterdam - **Mobile:** False - **Host:** hosted-
by.alsycon.net - **Proxy:** True - **VPN:** True - **TOR:** False - **Active VPN:** False -
Active TOR: False - **Recent Abuse:** False - **Bot Status:** False - **Connection
Type:** Premium required. - **Abuse Velocity:** Premium required. - **Country Code:** NL -
Region: North Holland - **City:** Amsterdam - **Latitude:** 52.37 - **Longitude:** 4.89

Pattern Type

stix

[ipv4-addr:value = '45.95146.93']

185132125193

Indicator

TLP:CLEAR

Description

- **Zip Code** N/A - **ISP** M247 Europe - **ASN:** 9009 - **Organization:** M247 Europe
- **|s Crawler:** False - **Timezone:** Asia/Hong_Kong - **Mobile:** False - **Host:**
185132125193 - **Proxy:** True - **VPN:** True - **TOR:** False - **Active VPN:** True -
Active TOR: False - **Recent Abuse:** False - **Bot Status:** False - **Connection
Type** Premium required. - **Abuse Velocity:** Premium required. - **Country Code:** HK
- **Region:** Central and Western District - **City:** Hong Kong - **Latitude:** 22.28 -
Longitude: 11418

Pattern Type

stix

Pattern

[ipv4-addr:value = '185132.125193']

9ebcac15e36dd79439d5f92febf1933e0a68e75cc1e9eech6369e4b3317€2949

Description

SUSP_ELF_LNX_UPX_Compressed_File SHA256 of 7f741495f14c828c20db4de6251673fd

Pattern Type

stix

Pattern

[file:hashes!SHA-256' =
'9ebcac15e36dd79439d5f92febf1933e0a68e75cc1e9eech6369e4b33172949']

n Indicator

TLP:CLEAR

94103.188.167

Description

- **7ip Code** N/A - **|SP:** Alexhost - **ASN:** 200019 - **QOrganization:** Alexhost - **Is
Crawler:** False - **Timezone:** Europe/Moscow - **Mobile:** False - **Host:** node-2-md
- **Proxy:** True - **VPN:** True - **TOR:** False - **Active VPN:** False - **Active TOR:**
False - **Recent Abuse:** False - **Bot Status:** False - **Connection Type:** Premium
required. - **Abuse Velocity:** Premium required. - **Country Code:** RU - **Region:**
Moscow - **City:** Moscow - **Latitude:** 55.75 - **Longitude:** 37.62

Pattern Type

stix

Pattern

[ipv4-addrvalue = '94103188.167']

45.95146.93

Description

- **7ip Code** N/A - **ISP:** Alsycon - **ASN:** 49870 - **Organization:** Alsycon - **Is
Crawler:** False - **Timezone:** Europe/Amsterdam - **Mobile:** False - **Host:** hosted-
by.alsycon.net - **Proxy:** True - **VPN:** True - **TOR:** False - **Active VPN:** False -
Active TOR: False - **Recent Abuse:** False - **Bot Status:** False - **Connection
Type:** Premium required. - **Abuse Velocity:** Premium required. - **Country Code:** NL -
Region: North Holland - **City:** Amsterdam - **Latitude:** 52.37 - **Longitude:** 4.89

Pattern Type

stix

n Indicator

Pattern

[ipv4-addr:value = '45.95146.93']

185132125193

Description

- **Zip Code** N/A - **ISP:** M247 Europe - **ASN:** 9009 - **Organization:** M247 Europe
- **|s Crawler:** False - **Timezone:** Asia/Hong_Kong - **Mobile:** False - **Host:**
185132125193 - **Proxy:** True - **VPN:** True - **TOR:** False - **Active VPN:** True -
Active TOR: False - **Recent Abuse:** False - **Bot Status:** False - **Connection
Type** Premium required. - **Abuse Velocity:** Premium required. - **Country Code:** HK
- **Region:** Central and Western District - **City:** Hong Kong - **Latitude:** 22.28 -
Longitude: 11418

Pattern Type

stix

[ipv4-addr:value = '185132.125193']

Indicator

TLP:CLEAR

Vulnerability

CVE-2013-5948

CVE-2020-8515

DrayTek Vigor3900, Vigor2960, and Vigor300B routers contain an unspecified vulnerability
that allows for remote code execution.

Description

CVE-2013-5948

CVE-2020-8515

Description

DrayTek Vigor3900, Vigor2960, and Vigor300B routers contain an unspecified vulnerability
that allows for remote code execution.

Vulnerability

TLP:CLEAR

Smargaft

Smargaft

Malware

TLP:CLEAR

Attack-Pattern

TAOOM

TAOOM

Network Denial of Service

T1498

Description

Adversaries may perform Network Denial of Service (DoS) attacks to degrade or block the
availability of targeted resources to users. Network DoS can be performed by exhausting
the network bandwidth services rely on. Example resources include specific websites,
email services, DNS, and web-based applications. Adversaries have been observed
conducting network DoS attacks for political purposes(Citation: FireEye
OpPoisonedHandover February 2016) and to support other malicious activities, including
distraction(Citation: FSISAC FraudNetDoS September 2012), hacktivism, and extortion.
(Citation: Symantec DDoS October 2014) A Network DoS will occur when the bandwidth
capacity of the network connection to a system is exhausted due to the volume of
malicious traffic directed at the resource or the network connections and network devices
the resource relies on. For example, an adversary may send 10Gbps of traffic to a server

Attack-Pattern

TLP:CLEAR

that is hosted by a network with a 1Gbps connection to the internet. This traffic can be
generated by a single system or multiple systems spread across the internet, which is
commonly referred to as a distributed DoS (DDoS). To perform Network DoS attacks several
aspects apply to multiple methods, including IP address spoofing, and botnets.
Adversaries may use the original IP address of an attacking system, or spoof the source IP
address to make the attack traffic more difficult to trace back to the attacking system or to
enable reflection. This can increase the difficulty defenders have in defending against the
attack by reducing or eliminating the effectiveness of filtering by the source address on
network defense devices. For DoS attacks targeting the hosting system directly, see
[Endpoint Denial of Service](https://attack.mitre.org/techniques/T1499).

Endpoint Denial of Service

T1499

Description

Adversaries may perform Endpoint Denial of Service (DoS) attacks to degrade or block the
availability of services to users. Endpoint DoS can be performed by exhausting the system
resources those services are hosted on or exploiting the system to cause a persistent
crash condition. Example services include websites, email services, DNS, and web-based
applications. Adversaries have been observed conducting DoS attacks for political
purposes(Citation: FireEye OpPoisonedHandover February 2016) and to support other
malicious activities, including distraction(Citation: FSISAC FraudNetDoS September 2012),
hacktivism, and extortion.(Citation: Symantec DDoS October 2014) An Endpoint DoS denies
the availability of a service without saturating the network used to provide access to the
service. Adversaries can target various layers of the application stack that is hosted on the
system used to provide the service. These layers include the Operating Systems (0S),
server applications such as web servers, DNS servers, databases, and the (typically web-
based) applications that sit on top of them. Attacking each layer requires different
techniques that take advantage of bottlenecks that are unique to the respective
components. A DoS attack may be generated by a single system or multiple systems
spread across the internet, which is commonly referred to as a distributed DoS (DDoS). To
perform DoS attacks against endpoint resources, several aspects apply to multiple
methods, including IP address spoofing and botnets. Adversaries may use the original IP
address of an attacking system, or spoof the source IP address to make the attack traffic
more difficult to trace back to the attacking system or to enable reflection. This can

Attack-Pattern

TLP:CLEAR

increase the difficulty defenders have in defending against the attack by reducing or
eliminating the effectiveness of filtering by the source address on network defense
devices. Botnets are commonly used to conduct DDoS attacks against networks and
services. Large botnets can generate a significant amount of traffic from systems spread
across the global internet. Adversaries may have the resources to build out and control
their own botnet infrastructure or may rent time on an existing botnet to conduct an
attack. In some of the worst cases for DDoS, so many systems are used to generate
requests that each one only needs to send out a small amount of traffic to produce
enough volume to exhaust the target's resources. In such circumstances, distinguishing
DDoS traffic from legitimate clients becomes exceedingly difficult. Botnets have been used
in some of the most high-profile DDoS attacks, such as the 2012 series of incidents that
targeted major US banks.(Citation: USNYAG IranianBotnet March 2016) In cases where
traffic manipulation is used, there may be points in the global network (such as high traffic
gateway routers) where packets can be altered and cause legitimate clients to execute
code that directs network packets toward a target in high volume. This type of capability
was previously used for the purposes of web censorship where client HTTP traffic was
modified to include a reference to JavaScript that generated the DDoS code to overwhelm
target web servers.(Citation: ArsTechnica Great Firewall of China) For attacks attempting to
saturate the providing network, see [Network Denial of Service](https://attack.mitre.org/
techniques/T1498).

Web Service

11102

Description

Adversaries may use an existing, legitimate external Web service as a means for relaying
data to/from a compromised system. Popular websites and social media acting as a
mechanism for C2 may give a significant amount of cover due to the likelihood that hosts
within a network are already communicating with them prior to a compromise. Using
common services, such as those offered by Google or Twitter, makes it easier for
adversaries to hide in expected noise. Web service providers commonly use SSL/TLS
encryption, giving adversaries an added level of protection. Use of Web services may also
protect back-end C2 infrastructure from discovery through malware binary analysis while

Attack-Pattern

TLP:CLEAR

also enabling operational resiliency (since this infrastructure may be dynamically
changed).

Indicator Removal

T1070

Description

Adversaries may delete or modify artifacts generated within systems to remove evidence
of their presence or hinder defenses. Various artifacts may be created by an adversary or
something that can be attributed to an adversary’s actions. Typically these artifacts are
used as defensive indicators related to monitored events, such as strings from
downloaded files, logs that are generated from user actions, and other data analyzed by
defenders. Location, format, and type of artifact (such as command or login history) are
often specific to each platform. Removal of these indicators may interfere with event
collection, reporting, or other processes used to detect intrusion activity. This may
compromise the integrity of security solutions by causing notable events to go unreported.
This activity may also impede forensic analysis and incident response, due to lack of
sufficient data to determine what occurred.

Command and Scripting Interpreter

T1059

Description

Adversaries may abuse command and script interpreters to execute commands, scripts, or
binaries. These interfaces and languages provide ways of interacting with computer
systems and are a common feature across many different platforms. Most systems come

Attack-Pattern

TLP:CLEAR

with some built-in command-line interface and scripting capabilities, for example, macOS
and Linux distributions include some flavor of [Unix Shelll(https://attack.mitre.org/
techniques/T1059/004) while Windows installations include the [Windows Command Shell]
(https://attack.mitre.org/techniques/T1059/003) and [PowerShell](https://attack.mitre.org/
techniques/T1059/001). There are also cross-platform interpreters such as [Python]
(https://attack.mitre.org/techniques/T1059/006), as well as those commonly associated
with client applications such as [JavaScript](https://attack.mitre.org/techniques/
T1059/007) and [Visual Basic](https://attack.mitre.org/techniques/T1059/005). Adversaries
may abuse these technologies in various ways as a means of executing arbitrary
commands. Commands and scripts can be embedded in [Initial Access](https://
attack.mitre.org/tactics/TA0O001) payloads delivered to victims as lure documents or as
secondary payloads downloaded from an existing C2. Adversaries may also execute
commands through interactive terminals/shells, as well as utilize various [Remote
Services](https://attack.mitre.org/techniques/T1021) in order to achieve remote Execution.
(Citation: Powershell Remote Commands)(Citation: Cisco 10S Software Integrity Assurance -
Command History)(Citation: Remote Shell Execution in Python)

Obfuscated Files or Information

11027

Description

Adversaries may attempt to make an executable or file difficult to discover or analyze by
encrypting, encoding, or otherwise obfuscating its contents on the system or in transit.
This is common behavior that can be used across different platforms and the network to
evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid
detection. These payloads may be used during Initial Access or later to mitigate detection.
Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or
Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https://
attack.mitre.org/techniques/T1204). The user may also be required to input a password to
open a password protected compressed/encrypted file that was provided by the adversary.
(Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or
archived scripts, such as JavaScript. Portions of files can also be encoded to hide the
plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/
Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly
benign files that only reveal malicious functionality when reassembled. (Citation: Carbon

Attack-Pattern

TLP:CLEAR

Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https://
attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or
directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/
T1059). Environment variables, aliases, characters, and other platform/language specific

semantics can be used to evade signature based detections and application control
mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-
Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Native API

T1106

Description

Adversaries may interact with the native OS application programming interface (API) to
execute behaviors. Native APIs provide a controlled means of calling low-level OS services
within the kernel, such as those involving hardware/devices, memory, and processes.
(Citation: NT APl Windows)(Citation: Linux Kernel API) These native APIs are leveraged by
the OS during system boot (when other system components are not yet initialized) as well
as carrying out tasks and requests during routine operations. Adversaries may abuse these
OS API functions as a means of executing behaviors. Similar to [Command and Scripting
Interpreter](https://attack.mitre.org/techniques/T1059), the native API and its hierarchy of
interfaces provide mechanisms to interact with and utilize various components of a
victimized system. Native API functions (such as "NtCreateProcess’) may be directed
invoked via system calls / syscalls, but these features are also often exposed to user-
mode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation:
CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the
Windows API “CreateProcess()” or GNU “fork()" will allow programs and scripts to start other
processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers
to execute a binary, run a CLI command, load modules, etc. as thousands of similar API
functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC)
(Citation: GLIBC) Higher level software frameworks, such as Microsoft NET and macOS
Cocoa, are also available to interact with native APIs. These frameworks typically provide
language wrappers/abstractions to API functionalities and are designed for ease-of-use/
portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS
Cocoa)(Citation: macOS Foundation) Adversaries may use assembly to directly or in-
directly invoke syscalls in an attempt to subvert defensive sensors and detection

Attack-Pattern

TLP:CLEAR

signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also
attempt to tamper with sensors and defensive tools associated with APl monitoring, such
as unhooking monitored functions via [Disable or Modify Tools](https://attack.mitre.org/

techniques/T1562/001).

Scheduled Task/)ob

11053

Description

Adversaries may abuse task scheduling functionality to facilitate initial or recurring
execution of malicious code. Utilities exist within all major operating systems to schedule
programs or scripts to be executed at a specified date and time. A task can also be
scheduled on a remote system, provided the proper authentication is met (ex: RPC and file
and printer sharing in Windows environments). Scheduling a task on a remote system
typically may require being a member of an admin or otherwise privileged group on the
remote system.(Citation: TechNet Task Scheduler Security) Adversaries may use task
scheduling to execute programs at system startup or on a scheduled basis for persistence.
These mechanisms can also be abused to run a process under the context of a specified
account (such as one with elevated permissions/privileges). Similar to [System Binary
Proxy Execution](https://attack.mitre.org/techniques/T1218), adversaries have also abused
task scheduling to potentially mask one-time execution under a trusted system process.
(Citation: ProofPoint Serpent)

Network Sniffing

T1040

Description

Attack-Pattern

TLP:CLEAR

Adversaries may sniff network traffic to capture information about an environment,
including authentication material passed over the network. Network sniffing refers to
using the network interface on a system to monitor or capture information sent over a
wired or wireless connection. An adversary may place a network interface into
promiscuous mode to passively access data in transit over the network, or use span ports
to capture a larger amount of data. Data captured via this technique may include user
credentials, especially those sent over an insecure, unencrypted protocol. Techniques for
name service resolution poisoning, such as [LLMNR/NBT-NS Poisoning and SMB Relay]
(https://attack.mitre.org/techniques/T1557/001), can also be used to capture credentials to
websites, proxies, and internal systems by redirecting traffic to an adversary. Network
sniffing may also reveal configuration details, such as running services, version numbers,
and other network characteristics (e.g. IP addresses, hostnames, VLAN IDs) necessary for
subsequent Lateral Movement and/or Defense Evasion activities. In cloud-based
environments, adversaries may still be able to use traffic mirroring services to sniff
network traffic from virtual machines. For example, AWS Traffic Mirroring, GCP Packet
Mirroring, and Azure vTap allow users to define specified instances to collect traffic from
and specified targets to send collected traffic to.(Citation: AWS Traffic Mirroring)(Citation:
GCP Packet Mirroring)(Citation: Azure Virtual Network TAP) Often, much of this traffic will be
in cleartext due to the use of TLS termination at the load balancer level to reduce the
strain of encrypting and decrypting traffic.(Citation: Rhino Security Labs AWS VPC Traffic
Mirroring)(Citation: SpecterOps AWS Traffic Mirroring) The adversary can then use
exfiltration techniques such as Transfer Data to Cloud Account in order to access the
sniffed traffic.(Citation: Rhino Security Labs AWS VPC Traffic Mirroring) On network devices,
adversaries may perform network captures using [Network Device CLI](https://
attack.mitre.org/techniques/T1059/008) commands such as ‘'monitor capture™.(Citation:
US-CERT-TA18-106A)(Citation: capture_embedded_packet_on_software)

TAOOM

TAOOM

Network Denial of Service

Attack-Pattern

TLP:CLEAR

T1498

Description

Adversaries may perform Network Denial of Service (DoS) attacks to degrade or block the
availability of targeted resources to users. Network DoS can be performed by exhausting
the network bandwidth services rely on. Example resources include specific websites,
email services, DNS, and web-based applications. Adversaries have been observed
conducting network DoS attacks for political purposes(Citation: FireEye
OpPoisonedHandover February 2016) and to support other malicious activities, including
distraction(Citation: FSISAC FraudNetDoS September 2012), hacktivism, and extortion.
(Citation: Symantec DDoS October 2014) A Network DoS will occur when the bandwidth
capacity of the network connection to a system is exhausted due to the volume of
malicious traffic directed at the resource or the network connections and network devices
the resource relies on. For example, an adversary may send 10Gbps of traffic to a server
that is hosted by a network with a 1Gbps connection to the internet. This traffic can be
generated by a single system or multiple systems spread across the internet, which is
commonly referred to as a distributed DoS (DDoS). To perform Network DoS attacks several
aspects apply to multiple methods, including IP address spoofing, and botnets.
Adversaries may use the original IP address of an attacking system, or spoof the source IP
address to make the attack traffic more difficult to trace back to the attacking system or to
enable reflection. This can increase the difficulty defenders have in defending against the

attack by reducing or eliminating the effectiveness of filtering by the source address on
network defense devices. For DoS attacks targeting the hosting system directly, see
[Endpoint Denial of Service](https://attack.mitre.org/techniques/T1499).

Endpoint Denial of Service

T1499

Description

Attack-Pattern

TLP:CLEAR

Adversaries may perform Endpoint Denial of Service (DoS) attacks to degrade or block the
availability of services to users. Endpoint DoS can be performed by exhausting the system
resources those services are hosted on or exploiting the system to cause a persistent
crash condition. Example services include websites, email services, DNS, and web-based
applications. Adversaries have been observed conducting DoS attacks for political
purposes(Citation: FireEye OpPoisonedHandover February 2016) and to support other
malicious activities, including distraction(Citation: FSISAC FraudNetDoS September 2012),
hacktivism, and extortion.(Citation: Symantec DDoS October 2014) An Endpoint DoS denies
the availability of a service without saturating the network used to provide access to the
service. Adversaries can target various layers of the application stack that is hosted on the
system used to provide the service. These layers include the Operating Systems (0S),
server applications such as web servers, DNS servers, databases, and the (typically web-
based) applications that sit on top of them. Attacking each layer requires different
techniques that take advantage of bottlenecks that are unique to the respective
components. A DoS attack may be generated by a single system or multiple systems
spread across the internet, which is commonly referred to as a distributed DoS (DDoS). To
perform DoS attacks against endpoint resources, several aspects apply to multiple
methods, including IP address spoofing and botnets. Adversaries may use the original IP
address of an attacking system, or spoof the source IP address to make the attack traffic
more difficult to trace back to the attacking system or to enable reflection. This can
increase the difficulty defenders have in defending against the attack by reducing or
eliminating the effectiveness of filtering by the source address on network defense
devices. Botnets are commonly used to conduct DDoS attacks against networks and
services. Large botnets can generate a significant amount of traffic from systems spread
across the global internet. Adversaries may have the resources to build out and control
their own botnet infrastructure or may rent time on an existing botnet to conduct an
attack. In some of the worst cases for DDoS, so many systems are used to generate
requests that each one only needs to send out a small amount of traffic to produce
enough volume to exhaust the target's resources. In such circumstances, distinguishing
DDoS traffic from legitimate clients becomes exceedingly difficult. Botnets have been used
in some of the most high-profile DDoS attacks, such as the 2012 series of incidents that
targeted major US banks.(Citation: USNYAG IranianBotnet March 2016) In cases where
traffic manipulation is used, there may be points in the global network (such as high traffic
gateway routers) where packets can be altered and cause legitimate clients to execute
code that directs network packets toward a target in high volume. This type of capability
was previously used for the purposes of web censorship where client HTTP traffic was
modified to include a reference to JavaScript that generated the DDoS code to overwhelm
target web servers.(Citation: ArsTechnica Great Firewall of China) For attacks attempting to
saturate the providing network, see [Network Denial of Service](https://attack.mitre.org/
techniques/T1498).

Attack-Pattern

TLP:CLEAR

Web Service

T1102

Description

Adversaries may use an existing, legitimate external Web service as a means for relaying
data to/from a compromised system. Popular websites and social media acting as a
mechanism for C2 may give a significant amount of cover due to the likelihood that hosts
within a network are already communicating with them prior to a compromise. Using
common services, such as those offered by Google or Twitter, makes it easier for
adversaries to hide in expected noise. Web service providers commonly use SSL/TLS
encryption, giving adversaries an added level of protection. Use of Web services may also

protect back-end C2 infrastructure from discovery through malware binary analysis while
also enabling operational resiliency (since this infrastructure may be dynamically
changed).

Indicator Removal

T1070

Description

Adversaries may delete or modify artifacts generated within systems to remove evidence
of their presence or hinder defenses. Various artifacts may be created by an adversary or
something that can be attributed to an adversary’s actions. Typically these artifacts are
used as defensive indicators related to monitored events, such as strings from
downloaded files, logs that are generated from user actions, and other data analyzed by
defenders. Location, format, and type of artifact (such as command or login history) are
often specific to each platform. Removal of these indicators may interfere with event
collection, reporting, or other processes used to detect intrusion activity. This may
compromise the integrity of security solutions by causing notable events to go unreported.

Attack-Pattern

TLP:CLEAR

This activity may also impede forensic analysis and incident response, due to lack of
sufficient data to determine what occurred.

Command and Scripting Interpreter

T1059

Description

Adversaries may abuse command and script interpreters to execute commands, scripts, or
binaries. These interfaces and languages provide ways of interacting with computer
systems and are a common feature across many different platforms. Most systems come
with some built-in command-line interface and scripting capabilities, for example, macOS
and Linux distributions include some flavor of [Unix Shell](https://attack.mitre.org/
techniques/T1059/004) while Windows installations include the [Windows Command Shell]
(https://attack.mitre.org/techniques/T1059/003) and [PowerShell](https://attack.mitre.org/
techniques/T1059/001). There are also cross-platform interpreters such as [Python]
(https://attack.mitre.org/techniques/T1059/006), as well as those commonly associated
with client applications such as [JavaScript](https://attack.mitre.org/techniques/
T1059/007) and [Visual Basic](https://attack.mitre.org/techniques/T1059/005). Adversaries
may abuse these technologies in various ways as a means of executing arbitrary
commands. Commands and scripts can be embedded in [Initial Access](https://
attack.mitre.org/tactics/TA0O001) payloads delivered to victims as lure documents or as
secondary payloads downloaded from an existing C2. Adversaries may also execute

commands through interactive terminals/shells, as well as utilize various [Remote
Services](https://attack.mitre.org/techniques/T1021) in order to achieve remote Execution.
(Citation: Powershell Remote Commands)(Citation: Cisco 10S Software Integrity Assurance -
Command History)(Citation: Remote Shell Execution in Python)

Obfuscated Files or Information

Attack-Pattern

TLP:CLEAR

11027

Adversaries may attempt to make an executable or file difficult to discover or analyze by
encrypting, encoding, or otherwise obfuscating its contents on the system or in transit.
This is common behavior that can be used across different platforms and the network to
evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid
detection. These payloads may be used during Initial Access or later to mitigate detection.
Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or
Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https://
attack.mitre.org/techniques/T1204). The user may also be required to input a password to
open a password protected compressed/encrypted file that was provided by the adversary.
(Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or
archived scripts, such as JavaScript. Portions of files can also be encoded to hide the
plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/
Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly
benign files that only reveal malicious functionality when reassembled. (Citation: Carbon
Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https://
attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or
directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/
T1059). Environment variables, aliases, characters, and other platform/language specific
semantics can be used to evade signature based detections and application control
mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-
Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Native API

T1106

Description

Adversaries may interact with the native OS application programming interface (API) to
execute behaviors. Native APIs provide a controlled means of calling low-level OS services
within the kernel, such as those involving hardware/devices, memory, and processes.

Attack-Pattern

TLP:CLEAR

(Citation: NT APl Windows)(Citation: Linux Kernel API) These native APIs are leveraged by
the OS during system boot (when other system components are not yet initialized) as well
as carrying out tasks and requests during routine operations. Adversaries may abuse these
OS API functions as a means of executing behaviors. Similar to [Command and Scripting
Interpreter](https://attack.mitre.org/techniques/T1059), the native API and its hierarchy of
interfaces provide mechanisms to interact with and utilize various components of a
victimized system. Native API functions (such as "NtCreateProcess’) may be directed
invoked via system calls / syscalls, but these features are also often exposed to user-
mode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation:
CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the
Windows API “CreateProcess()” or GNU “fork()” will allow programs and scripts to start other
processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers
to execute a binary, run a CLI command, load modules, etc. as thousands of similar API
functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC)
(Citation: GLIBC) Higher level software frameworks, such as Microsoft .NET and macOS
Cocoa, are also available to interact with native APIs. These frameworks typically provide
language wrappers/abstractions to API functionalities and are designed for ease-of-use/
portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS
Cocoa)(Citation: macOS Foundation) Adversaries may use assembly to directly or in-
directly invoke syscalls in an attempt to subvert defensive sensors and detection

signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also
attempt to tamper with sensors and defensive tools associated with APl monitoring, such
as unhooking monitored functions via [Disable or Modify Tools](https://attack.mitre.org/

techniques/T1562/001).

Scheduled Task/Job

11053

Description

Adversaries may abuse task scheduling functionality to facilitate initial or recurring
execution of malicious code. Utilities exist within all major operating systems to schedule
programs or scripts to be executed at a specified date and time. A task can also be
scheduled on a remote system, provided the proper authentication is met (ex: RPC and file
and printer sharing in Windows environments). Scheduling a task on a remote system
typically may require being a member of an admin or otherwise privileged group on the

Attack-Pattern

TLP:CLEAR

remote system.(Citation: TechNet Task Scheduler Security) Adversaries may use task
scheduling to execute programs at system startup or on a scheduled basis for persistence.
These mechanisms can also be abused to run a process under the context of a specified
account (such as one with elevated permissions/privileges). Similar to [System Binary

Proxy Execution](https://attack.mitre.org/techniques/T1218), adversaries have also abused
task scheduling to potentially mask one-time execution under a trusted system process.
(Citation: ProofPoint Serpent)

Network Sniffing

T1040

Description

Adversaries may sniff network traffic to capture information about an environment,
including authentication material passed over the network. Network sniffing refers to
using the network interface on a system to monitor or capture information sent over a
wired or wireless connection. An adversary may place a network interface into
promiscuous mode to passively access data in transit over the network, or use span ports
to capture a larger amount of data. Data captured via this technique may include user
credentials, especially those sent over an insecure, unencrypted protocol. Techniques for
name service resolution poisoning, such as [LLMNR/NBT-NS Poisoning and SMB Relay]
(https://attack.mitre.org/techniques/T1557/001), can also be used to capture credentials to
websites, proxies, and internal systems by redirecting traffic to an adversary. Network
sniffing may also reveal configuration details, such as running services, version numbers,
and other network characteristics (e.g. IP addresses, hostnames, VLAN IDs) necessary for
subsequent Lateral Movement and/or Defense Evasion activities. In cloud-based
environments, adversaries may still be able to use traffic mirroring services to sniff
network traffic from virtual machines. For example, AWS Traffic Mirroring, GCP Packet
Mirroring, and Azure vTap allow users to define specified instances to collect traffic from
and specified targets to send collected traffic to.(Citation: AWS Traffic Mirroring)(Citation:
GCP Packet Mirroring)(Citation: Azure Virtual Network TAP) Often, much of this traffic will be
in cleartext due to the use of TLS termination at the load balancer level to reduce the
strain of encrypting and decrypting traffic.(Citation: Rhino Security Labs AWS VPC Traffic
Mirroring)(Citation: SpecterOps AWS Traffic Mirroring) The adversary can then use
exfiltration techniques such as Transfer Data to Cloud Account in order to access the
sniffed traffic.(Citation: Rhino Security Labs AWS VPC Traffic Mirroring) On network devices,

Attack-Pattern

TLP:CLEAR

adversaries may perform network captures using [Network Device CLI](https://
attack.mitre.org/techniques/T1059/008) commands such as ‘monitor capture”.(Citation:
US-CERT-TA18-106A)(Citation: capture_embedded_packet_on_software)

Attack-Pattern

TLP:CLEAR

StixFile

9ebcac15e36dd79439d5f92febf1933e0a68e75cc1e9eech6369e4h33172949

9ebcac15e36dd79439d5f92febf1933e0a68e75cc1e9eech6369e4h33172949

TLP:CLEAR

IPv4-Addr

|IIHHHHII

94.103188.167

45.95146.93

185132125193

94103.188.167

45.95146.93

185132125193

e

TLP:CLEAR

External References

https://blog.xlab.gianxin.com/smargaft_abusing_binance-smart-contracts_en/

https://otx.alienvault.com/pulse/65c0f0f561a3fcdasf097b3e

External References

https://blog.xlab.qianxin.com/smargaft_abusing_binance-smart-contracts_en/
https://otx.alienvault.com/pulse/65c0f0f561a3fcda5f097b3e

	Intelligence Report
	Table of contents
	Overview
	Entities
	Observables
	External References

	Overview
	Description
	Confidence

	Content
	Indicator
	Vulnerability
	Malware
	Attack-Pattern
	StixFile
	IPv4-Addr
	External References

