
Feb 08 2024

Intelligence Report
HijackLoader Expands
Techniques to Improve
Defense Evasion

 N/A

 N/A

 N/A

 N/A

 info@netmanageit.com

 https://www.netmanageit.com

1

4

4

5

6

7

8

21

Table of contents

Overview

• Description

• Confidence

• Content

Entities

• Indicator

• Malware

• Attack-Pattern

Observables

• StixFile

TLP:CLEAR

2 Table of contents

22

External References

• External References

TLP:CLEAR

3 Table of contents

Overview

Description

A recent variant of the HijackLoader malware employs sophisticated techniques like process

hollowing and doppelgänging to enhance its complexity and evade detection. It uses multiple

stages and shellcode injection to deploy Cobalt Strike.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

15 / 100

TLP:CLEAR

4 Overview

Content

N/A

TLP:CLEAR

5 Content

Indicator

Name

6f345b9fda1ceb9fe4cf58b33337bb9f820550ba08ae07c782c2e142f7323748

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'6f345b9fda1ceb9fe4cf58b33337bb9f820550ba08ae07c782c2e142f7323748']

Name

6f345b9fda1ceb9fe4cf58b33337bb9f820550ba08ae07c782c2e142f7323748

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'6f345b9fda1ceb9fe4cf58b33337bb9f820550ba08ae07c782c2e142f7323748']

TLP:CLEAR

6 Indicator

Malware

Name

HijackLoader

Name

HijackLoader

TLP:CLEAR

7 Malware

Attack-Pattern

Name

Process Hollowing

ID

T1055.012

Description

Adversaries may inject malicious code into suspended and hollowed processes in order to

evade process-based defenses. Process hollowing is a method of executing arbitrary code

in the address space of a separate live process. Process hollowing is commonly performed

by creating a process in a suspended state then unmapping/hollowing its memory, which

can then be replaced with malicious code. A victim process can be created with native

Windows API calls such as `CreateProcess`, which includes a flag to suspend the processes

primary thread. At this point the process can be unmapped using APIs calls such as

`ZwUnmapViewOfSection` or `NtUnmapViewOfSection` before being written to, realigned to

the injected code, and resumed via `VirtualAllocEx`, `WriteProcessMemory`,

`SetThreadContext`, then `ResumeThread` respectively.(Citation: Leitch Hollowing)(Citation:

Elastic Process Injection July 2017) This is very similar to [Thread Local Storage](https://

attack.mitre.org/techniques/T1055/005) but creates a new process rather than targeting an

existing process. This behavior will likely not result in elevated privileges since the

injected process was spawned from (and thus inherits the security context) of the injecting

process. However, execution via process hollowing may also evade detection from security

products since the execution is masked under a legitimate process.

Name

Disable or Modify Tools

TLP:CLEAR

8 Attack-Pattern

ID

T1562.001

Description

Adversaries may modify and/or disable security tools to avoid possible detection of their

malware/tools and activities. This may take many forms, such as killing security software

processes or services, modifying / deleting Registry keys or configuration files so that

tools do not operate properly, or other methods to interfere with security tools scanning

or reporting information. Adversaries may also disable updates to prevent the latest

security patches from reaching tools on victim systems.(Citation: SCADAfence_ransomware)

Adversaries may also tamper with artifacts deployed and utilized by security tools. Security

tools may make dynamic changes to system components in order to maintain visibility

into specific events. For example, security products may load their own modules and/or

modify those loaded by processes to facilitate data collection. Similar to [Indicator

Blocking](https://attack.mitre.org/techniques/T1562/006), adversaries may unhook or

otherwise modify these features added by tools (especially those that exist in userland or

are otherwise potentially accessible to adversaries) to avoid detection.(Citation: OutFlank

System Calls)(Citation: MDSec System Calls) Adversaries may also focus on specific

applications such as Sysmon. For example, the “Start” and “Enable” values in

`HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WMI\Autologger\EventLog-

Microsoft-Windows-Sysmon-Operational` may be modified to tamper with and potentially

disable Sysmon logging.(Citation: disable_win_evt_logging) On network devices,

adversaries may attempt to skip digital signature verification checks by altering startup

configuration files and effectively disabling firmware verification that typically occurs at

boot.(Citation: Fortinet Zero-Day and Custom Malware Used by Suspected Chinese Actor in

Espionage Operation)(Citation: Analysis of FG-IR-22-369) In cloud environments, tools

disabled by adversaries may include cloud monitoring agents that report back to services

such as AWS CloudWatch or Google Cloud Monitor. Furthermore, although defensive tools

may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate

rootkit removal kits to impair and/or disable these tools.(Citation:

chasing_avaddon_ransomware)(Citation: dharma_ransomware)(Citation:

demystifying_ryuk)(Citation: doppelpaymer_crowdstrike) For example, adversaries have

used tools such as GMER to find and shut down hidden processes and antivirus software

on infected systems.(Citation: demystifying_ryuk) Additionally, adversaries may exploit

legitimate drivers from anti-virus software to gain access to kernel space (i.e. [Exploitation

for Privilege Escalation](https://attack.mitre.org/techniques/T1068)), which may lead to

bypassing anti-tampering features.(Citation: avoslocker_ransomware)

TLP:CLEAR

9 Attack-Pattern

Name

Process Doppelgänging

ID

T1055.013

Description

Adversaries may inject malicious code into process via process doppelgänging in order to

evade process-based defenses as well as possibly elevate privileges. Process

doppelgänging is a method of executing arbitrary code in the address space of a separate

live process. Windows Transactional NTFS (TxF) was introduced in Vista as a method to

perform safe file operations. (Citation: Microsoft TxF) To ensure data integrity, TxF enables

only one transacted handle to write to a file at a given time. Until the write handle

transaction is terminated, all other handles are isolated from the writer and may only read

the committed version of the file that existed at the time the handle was opened.

(Citation: Microsoft Basic TxF Concepts) To avoid corruption, TxF performs an automatic

rollback if the system or application fails during a write transaction. (Citation: Microsoft

Where to use TxF) Although deprecated, the TxF application programming interface (API) is

still enabled as of Windows 10. (Citation: BlackHat Process Doppelgänging Dec 2017)

Adversaries may abuse TxF to a perform a file-less variation of [Process Injection](https://

attack.mitre.org/techniques/T1055). Similar to [Process Hollowing](https://attack.mitre.org/

techniques/T1055/012), process doppelgänging involves replacing the memory of a

legitimate process, enabling the veiled execution of malicious code that may evade

defenses and detection. Process doppelgänging's use of TxF also avoids the use of highly-

monitored API functions such as `NtUnmapViewOfSection`, `VirtualProtectEx`, and

`SetThreadContext`. (Citation: BlackHat Process Doppelgänging Dec 2017) Process

Doppelgänging is implemented in 4 steps (Citation: BlackHat Process Doppelgänging Dec

2017): * Transact – Create a TxF transaction using a legitimate executable then overwrite

the file with malicious code. These changes will be isolated and only visible within the

context of the transaction. * Load – Create a shared section of memory and load the

malicious executable. * Rollback – Undo changes to original executable, effectively

removing malicious code from the file system. * Animate – Create a process from the

tainted section of memory and initiate execution. This behavior will likely not result in

elevated privileges since the injected process was spawned from (and thus inherits the

security context) of the injecting process. However, execution via process doppelgänging

may evade detection from security products since the execution is masked under a

legitimate process.

TLP:CLEAR

10 Attack-Pattern

Name

Obfuscated Files or Information

ID

T1027

Description

Adversaries may attempt to make an executable or file difficult to discover or analyze by

encrypting, encoding, or otherwise obfuscating its contents on the system or in transit.

This is common behavior that can be used across different platforms and the network to

evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid

detection. These payloads may be used during Initial Access or later to mitigate detection.

Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or

Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https://

attack.mitre.org/techniques/T1204). The user may also be required to input a password to

open a password protected compressed/encrypted file that was provided by the adversary.

(Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or

archived scripts, such as JavaScript. Portions of files can also be encoded to hide the

plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/

Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly

benign files that only reveal malicious functionality when reassembled. (Citation: Carbon

Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https://

attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or

directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/

T1059). Environment variables, aliases, characters, and other platform/language specific

semantics can be used to evade signature based detections and application control

mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-

Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Name

Deobfuscate/Decode Files or Information

ID

TLP:CLEAR

11 Attack-Pattern

T1140

Description

Adversaries may use [Obfuscated Files or Information](https://attack.mitre.org/

techniques/T1027) to hide artifacts of an intrusion from analysis. They may require

separate mechanisms to decode or deobfuscate that information depending on how they

intend to use it. Methods for doing that include built-in functionality of malware or by

using utilities present on the system. One such example is the use of [certutil](https://

attack.mitre.org/software/S0160) to decode a remote access tool portable executable file

that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack

against Saudi Arabia) Another example is using the Windows `copy /b` command to

reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation

Sept 2016) Sometimes a user's action may be required to open it for deobfuscation or

decryption as part of [User Execution](https://attack.mitre.org/techniques/T1204). The user

may also be required to input a password to open a password protected compressed/

encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November

2016)

Name

Native API

ID

T1106

Description

Adversaries may interact with the native OS application programming interface (API) to

execute behaviors. Native APIs provide a controlled means of calling low-level OS services

within the kernel, such as those involving hardware/devices, memory, and processes.

(Citation: NT API Windows)(Citation: Linux Kernel API) These native APIs are leveraged by

the OS during system boot (when other system components are not yet initialized) as well

as carrying out tasks and requests during routine operations. Adversaries may abuse these

OS API functions as a means of executing behaviors. Similar to [Command and Scripting

Interpreter](https://attack.mitre.org/techniques/T1059), the native API and its hierarchy of

interfaces provide mechanisms to interact with and utilize various components of a

victimized system. Native API functions (such as `NtCreateProcess`) may be directed

TLP:CLEAR

12 Attack-Pattern

invoked via system calls / syscalls, but these features are also often exposed to user-

mode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation:

CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the

Windows API `CreateProcess()` or GNU `fork()` will allow programs and scripts to start other

processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers

to execute a binary, run a CLI command, load modules, etc. as thousands of similar API

functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC)

(Citation: GLIBC) Higher level software frameworks, such as Microsoft .NET and macOS

Cocoa, are also available to interact with native APIs. These frameworks typically provide

language wrappers/abstractions to API functionalities and are designed for ease-of-use/

portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS

Cocoa)(Citation: macOS Foundation) Adversaries may use assembly to directly or in-

directly invoke syscalls in an attempt to subvert defensive sensors and detection

signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also

attempt to tamper with sensors and defensive tools associated with API monitoring, such

as unhooking monitored functions via [Disable or Modify Tools](https://attack.mitre.org/

techniques/T1562/001).

Name

Malicious File

ID

T1204.002

Description

An adversary may rely upon a user opening a malicious file in order to gain execution.

Users may be subjected to social engineering to get them to open a file that will lead to

code execution. This user action will typically be observed as follow-on behavior from

[Spearphishing Attachment](https://attack.mitre.org/techniques/T1566/001). Adversaries

may use several types of files that require a user to execute them, including

.doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl. Adversaries may employ various forms of

[Masquerading](https://attack.mitre.org/techniques/T1036) and [Obfuscated Files or

Information](https://attack.mitre.org/techniques/T1027) to increase the likelihood that a

user will open and successfully execute a malicious file. These methods may include using

a familiar naming convention and/or password protecting the file and supplying

instructions to a user on how to open it.(Citation: Password Protected Word Docs) While

[Malicious File](https://attack.mitre.org/techniques/T1204/002) frequently occurs shortly

after Initial Access it may occur at other phases of an intrusion, such as when an adversary

TLP:CLEAR

13 Attack-Pattern

places a file in a shared directory or on a user's desktop hoping that a user will click on it.

This activity may also be seen shortly after [Internal Spearphishing](https://

attack.mitre.org/techniques/T1534).

Name

Internet Connection Discovery

ID

T1016.001

Description

Adversaries may check for Internet connectivity on compromised systems. This may be

performed during automated discovery and can be accomplished in numerous ways such

as using [Ping](https://attack.mitre.org/software/S0097), `tracert`, and GET requests to

websites. Adversaries may use the results and responses from these requests to

determine if the system is capable of communicating with their C2 servers before

attempting to connect to them. The results may also be used to identify routes,

redirectors, and proxy servers.

Name

Process Hollowing

ID

T1055.012

Description

Adversaries may inject malicious code into suspended and hollowed processes in order to

evade process-based defenses. Process hollowing is a method of executing arbitrary code

in the address space of a separate live process. Process hollowing is commonly performed

by creating a process in a suspended state then unmapping/hollowing its memory, which

can then be replaced with malicious code. A victim process can be created with native

Windows API calls such as `CreateProcess`, which includes a flag to suspend the processes

TLP:CLEAR

14 Attack-Pattern

primary thread. At this point the process can be unmapped using APIs calls such as

`ZwUnmapViewOfSection` or `NtUnmapViewOfSection` before being written to, realigned to

the injected code, and resumed via `VirtualAllocEx`, `WriteProcessMemory`,

`SetThreadContext`, then `ResumeThread` respectively.(Citation: Leitch Hollowing)(Citation:

Elastic Process Injection July 2017) This is very similar to [Thread Local Storage](https://

attack.mitre.org/techniques/T1055/005) but creates a new process rather than targeting an

existing process. This behavior will likely not result in elevated privileges since the

injected process was spawned from (and thus inherits the security context) of the injecting

process. However, execution via process hollowing may also evade detection from security

products since the execution is masked under a legitimate process.

Name

Disable or Modify Tools

ID

T1562.001

Description

Adversaries may modify and/or disable security tools to avoid possible detection of their

malware/tools and activities. This may take many forms, such as killing security software

processes or services, modifying / deleting Registry keys or configuration files so that

tools do not operate properly, or other methods to interfere with security tools scanning

or reporting information. Adversaries may also disable updates to prevent the latest

security patches from reaching tools on victim systems.(Citation: SCADAfence_ransomware)

Adversaries may also tamper with artifacts deployed and utilized by security tools. Security

tools may make dynamic changes to system components in order to maintain visibility

into specific events. For example, security products may load their own modules and/or

modify those loaded by processes to facilitate data collection. Similar to [Indicator

Blocking](https://attack.mitre.org/techniques/T1562/006), adversaries may unhook or

otherwise modify these features added by tools (especially those that exist in userland or

are otherwise potentially accessible to adversaries) to avoid detection.(Citation: OutFlank

System Calls)(Citation: MDSec System Calls) Adversaries may also focus on specific

applications such as Sysmon. For example, the “Start” and “Enable” values in

`HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WMI\Autologger\EventLog-

Microsoft-Windows-Sysmon-Operational` may be modified to tamper with and potentially

disable Sysmon logging.(Citation: disable_win_evt_logging) On network devices,

adversaries may attempt to skip digital signature verification checks by altering startup

configuration files and effectively disabling firmware verification that typically occurs at

TLP:CLEAR

15 Attack-Pattern

boot.(Citation: Fortinet Zero-Day and Custom Malware Used by Suspected Chinese Actor in

Espionage Operation)(Citation: Analysis of FG-IR-22-369) In cloud environments, tools

disabled by adversaries may include cloud monitoring agents that report back to services

such as AWS CloudWatch or Google Cloud Monitor. Furthermore, although defensive tools

may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate

rootkit removal kits to impair and/or disable these tools.(Citation:

chasing_avaddon_ransomware)(Citation: dharma_ransomware)(Citation:

demystifying_ryuk)(Citation: doppelpaymer_crowdstrike) For example, adversaries have

used tools such as GMER to find and shut down hidden processes and antivirus software

on infected systems.(Citation: demystifying_ryuk) Additionally, adversaries may exploit

legitimate drivers from anti-virus software to gain access to kernel space (i.e. [Exploitation

for Privilege Escalation](https://attack.mitre.org/techniques/T1068)), which may lead to

bypassing anti-tampering features.(Citation: avoslocker_ransomware)

Name

Process Doppelgänging

ID

T1055.013

Description

Adversaries may inject malicious code into process via process doppelgänging in order to

evade process-based defenses as well as possibly elevate privileges. Process

doppelgänging is a method of executing arbitrary code in the address space of a separate

live process. Windows Transactional NTFS (TxF) was introduced in Vista as a method to

perform safe file operations. (Citation: Microsoft TxF) To ensure data integrity, TxF enables

only one transacted handle to write to a file at a given time. Until the write handle

transaction is terminated, all other handles are isolated from the writer and may only read

the committed version of the file that existed at the time the handle was opened.

(Citation: Microsoft Basic TxF Concepts) To avoid corruption, TxF performs an automatic

rollback if the system or application fails during a write transaction. (Citation: Microsoft

Where to use TxF) Although deprecated, the TxF application programming interface (API) is

still enabled as of Windows 10. (Citation: BlackHat Process Doppelgänging Dec 2017)

Adversaries may abuse TxF to a perform a file-less variation of [Process Injection](https://

attack.mitre.org/techniques/T1055). Similar to [Process Hollowing](https://attack.mitre.org/

techniques/T1055/012), process doppelgänging involves replacing the memory of a

legitimate process, enabling the veiled execution of malicious code that may evade

defenses and detection. Process doppelgänging's use of TxF also avoids the use of highly-

TLP:CLEAR

16 Attack-Pattern

monitored API functions such as `NtUnmapViewOfSection`, `VirtualProtectEx`, and

`SetThreadContext`. (Citation: BlackHat Process Doppelgänging Dec 2017) Process

Doppelgänging is implemented in 4 steps (Citation: BlackHat Process Doppelgänging Dec

2017): * Transact – Create a TxF transaction using a legitimate executable then overwrite

the file with malicious code. These changes will be isolated and only visible within the

context of the transaction. * Load – Create a shared section of memory and load the

malicious executable. * Rollback – Undo changes to original executable, effectively

removing malicious code from the file system. * Animate – Create a process from the

tainted section of memory and initiate execution. This behavior will likely not result in

elevated privileges since the injected process was spawned from (and thus inherits the

security context) of the injecting process. However, execution via process doppelgänging

may evade detection from security products since the execution is masked under a

legitimate process.

Name

Obfuscated Files or Information

ID

T1027

Description

Adversaries may attempt to make an executable or file difficult to discover or analyze by

encrypting, encoding, or otherwise obfuscating its contents on the system or in transit.

This is common behavior that can be used across different platforms and the network to

evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid

detection. These payloads may be used during Initial Access or later to mitigate detection.

Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or

Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https://

attack.mitre.org/techniques/T1204). The user may also be required to input a password to

open a password protected compressed/encrypted file that was provided by the adversary.

(Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or

archived scripts, such as JavaScript. Portions of files can also be encoded to hide the

plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/

Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly

benign files that only reveal malicious functionality when reassembled. (Citation: Carbon

Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https://

attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or

directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/

TLP:CLEAR

17 Attack-Pattern

T1059). Environment variables, aliases, characters, and other platform/language specific

semantics can be used to evade signature based detections and application control

mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-

Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Name

Deobfuscate/Decode Files or Information

ID

T1140

Description

Adversaries may use [Obfuscated Files or Information](https://attack.mitre.org/

techniques/T1027) to hide artifacts of an intrusion from analysis. They may require

separate mechanisms to decode or deobfuscate that information depending on how they

intend to use it. Methods for doing that include built-in functionality of malware or by

using utilities present on the system. One such example is the use of [certutil](https://

attack.mitre.org/software/S0160) to decode a remote access tool portable executable file

that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack

against Saudi Arabia) Another example is using the Windows `copy /b` command to

reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation

Sept 2016) Sometimes a user's action may be required to open it for deobfuscation or

decryption as part of [User Execution](https://attack.mitre.org/techniques/T1204). The user

may also be required to input a password to open a password protected compressed/

encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November

2016)

Name

Native API

ID

T1106

TLP:CLEAR

18 Attack-Pattern

Description

Adversaries may interact with the native OS application programming interface (API) to

execute behaviors. Native APIs provide a controlled means of calling low-level OS services

within the kernel, such as those involving hardware/devices, memory, and processes.

(Citation: NT API Windows)(Citation: Linux Kernel API) These native APIs are leveraged by

the OS during system boot (when other system components are not yet initialized) as well

as carrying out tasks and requests during routine operations. Adversaries may abuse these

OS API functions as a means of executing behaviors. Similar to [Command and Scripting

Interpreter](https://attack.mitre.org/techniques/T1059), the native API and its hierarchy of

interfaces provide mechanisms to interact with and utilize various components of a

victimized system. Native API functions (such as `NtCreateProcess`) may be directed

invoked via system calls / syscalls, but these features are also often exposed to user-

mode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation:

CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the

Windows API `CreateProcess()` or GNU `fork()` will allow programs and scripts to start other

processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers

to execute a binary, run a CLI command, load modules, etc. as thousands of similar API

functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC)

(Citation: GLIBC) Higher level software frameworks, such as Microsoft .NET and macOS

Cocoa, are also available to interact with native APIs. These frameworks typically provide

language wrappers/abstractions to API functionalities and are designed for ease-of-use/

portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS

Cocoa)(Citation: macOS Foundation) Adversaries may use assembly to directly or in-

directly invoke syscalls in an attempt to subvert defensive sensors and detection

signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also

attempt to tamper with sensors and defensive tools associated with API monitoring, such

as unhooking monitored functions via [Disable or Modify Tools](https://attack.mitre.org/

techniques/T1562/001).

Name

Malicious File

ID

T1204.002

Description

TLP:CLEAR

19 Attack-Pattern

An adversary may rely upon a user opening a malicious file in order to gain execution.

Users may be subjected to social engineering to get them to open a file that will lead to

code execution. This user action will typically be observed as follow-on behavior from

[Spearphishing Attachment](https://attack.mitre.org/techniques/T1566/001). Adversaries

may use several types of files that require a user to execute them, including

.doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl. Adversaries may employ various forms of

[Masquerading](https://attack.mitre.org/techniques/T1036) and [Obfuscated Files or

Information](https://attack.mitre.org/techniques/T1027) to increase the likelihood that a

user will open and successfully execute a malicious file. These methods may include using

a familiar naming convention and/or password protecting the file and supplying

instructions to a user on how to open it.(Citation: Password Protected Word Docs) While

[Malicious File](https://attack.mitre.org/techniques/T1204/002) frequently occurs shortly

after Initial Access it may occur at other phases of an intrusion, such as when an adversary

places a file in a shared directory or on a user's desktop hoping that a user will click on it.

This activity may also be seen shortly after [Internal Spearphishing](https://

attack.mitre.org/techniques/T1534).

Name

Internet Connection Discovery

ID

T1016.001

Description

Adversaries may check for Internet connectivity on compromised systems. This may be

performed during automated discovery and can be accomplished in numerous ways such

as using [Ping](https://attack.mitre.org/software/S0097), `tracert`, and GET requests to

websites. Adversaries may use the results and responses from these requests to

determine if the system is capable of communicating with their C2 servers before

attempting to connect to them. The results may also be used to identify routes,

redirectors, and proxy servers.

TLP:CLEAR

20 Attack-Pattern

StixFile

Value

6f345b9fda1ceb9fe4cf58b33337bb9f820550ba08ae07c782c2e142f7323748

6f345b9fda1ceb9fe4cf58b33337bb9f820550ba08ae07c782c2e142f7323748

TLP:CLEAR

21 StixFile

External References

• https://www.crowdstrike.com/blog/hijackloader-expands-techniques/

• https://otx.alienvault.com/pulse/65c4eef04dc8f00cfff4c528

TLP:CLEAR

22 External References

https://www.crowdstrike.com/blog/hijackloader-expands-techniques/
https://otx.alienvault.com/pulse/65c4eef04dc8f00cfff4c528

	Intelligence Report
	Table of contents
	Overview
	Entities
	Observables
	External References

	Overview
	Description
	Confidence

	Content
	Indicator
	Malware
	Attack-Pattern
	StixFile
	External References

