
NETMANAGE

Intelligence Report NSPX30: A sophisticated AitM-enabled implant evolving since 2005

Table of contents

Overview

•	Description	4
•	Confidence	4
•	Content	5

Entities

•	Attack-Pattern	6
•	Indicator	34
•	Intrusion-Set	37

Observables

•	StixFile	38
•	IPv4-Addr	39

External References

• External References

40

Overview

Description

ESET researchers provide an analysis of an attack carried out by a previously undisclosed China-aligned threat actor we have named Blackwood, and that we believe has been operating since at least 2018. The attackers deliver a sophisticated implant, which we named NSPX30, through adversary-in-the-middle (AitM) attacks hijacking update requests from legitimate software.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

15 / 100

Content

N/A

Attack-Pattern

Name

Adversary-in-the-Middle

ID

T1557

Description

Adversaries may attempt to position themselves between two or more networked devices using an adversary-in-the-middle (AiTM) technique to support follow-on behaviors such as [Network Sniffing](https://attack.mitre.org/techniques/T1040), [Transmitted Data Manipulation](https://attack.mitre.org/techniques/T1565/002), or replay attacks ([Exploitation for Credential Access](https://attack.mitre.org/techniques/T1212)). By abusing features of common networking protocols that can determine the flow of network traffic (e.g. ARP, DNS, LLMNR, etc.), adversaries may force a device to communicate through an adversary controlled system so they can collect information or perform additional actions.(Citation: Rapid7 MiTM Basics) For example, adversaries may manipulate victim DNS settings to enable other malicious activities such as preventing/redirecting users from accessing legitimate sites and/or pushing additional malware.(Citation: ttint_rat)(Citation: dns_changer_trojans)(Citation: ad_blocker_with_miner) Adversaries may also manipulate DNS and leverage their position in order to intercept user credentials and session cookies. (Citation: volexity_0day_sophos_FW) [Downgrade Attack](https://attack.mitre.org/ techniques/T1562/010)s can also be used to establish an AiTM position, such as by negotiating a less secure, deprecated, or weaker version of communication protocol (SSL/ TLS) or encryption algorithm.(Citation: mitm_tls_downgrade_att)(Citation: taxonomy_downgrade_att_tls)(Citation: tlseminar_downgrade_att) Adversaries may also leverage the AiTM position to attempt to monitor and/or modify traffic, such as in [Transmitted Data Manipulation](https://attack.mitre.org/techniques/T1565/002). Adversaries can setup a position similar to AiTM to prevent traffic from flowing to the

appropriate destination, potentially to [Impair Defenses](https://attack.mitre.org/ techniques/T1562) and/or in support of a [Network Denial of Service](https:// attack.mitre.org/techniques/T1498).

Name

Develop Capabilities

ID

T1587

Description

Adversaries may build capabilities that can be used during targeting. Rather than purchasing, freely downloading, or stealing capabilities, adversaries may develop their own capabilities in-house. This is the process of identifying development requirements and building solutions such as malware, exploits, and self-signed certificates. Adversaries may develop capabilities to support their operations throughout numerous phases of the adversary lifecycle.(Citation: Mandiant APT1)(Citation: Kaspersky Sofacy)(Citation: Bitdefender StrongPity June 2020)(Citation: Talos Promethium June 2020) As with legitimate development efforts, different skill sets may be required for developing capabilities. The skills needed may be located in-house, or may need to be contracted out. Use of a contractor may be considered an extension of that adversary's development capabilities, provided the adversary plays a role in shaping requirements and maintains a degree of exclusivity to the capability.

Name

Data Transfer Size Limits

 ID

 T1030

 Description

An adversary may exfiltrate data in fixed size chunks instead of whole files or limit packet sizes below certain thresholds. This approach may be used to avoid triggering network data transfer threshold alerts.

Name

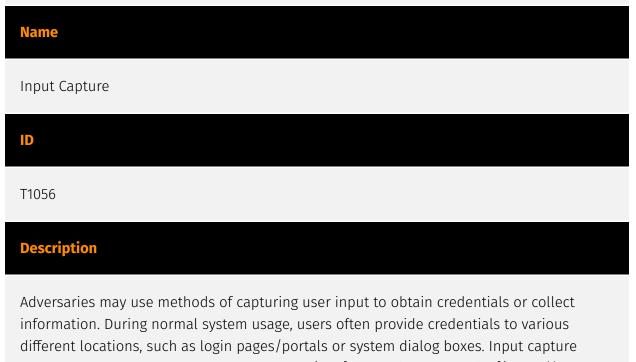
Boot or Logon Autostart Execution

ID

T1547

Description

Adversaries may configure system settings to automatically execute a program during system boot or logon to maintain persistence or gain higher-level privileges on compromised systems. Operating systems may have mechanisms for automatically running a program on system boot or account logon.(Citation: Microsoft Run Key)(Citation: MSDN Authentication Packages)(Citation: Microsoft TimeProvider)(Citation: Cylance Reg Persistence Sept 2013)(Citation: Linux Kernel Programming) These mechanisms may include automatically executing programs that are placed in specially designated directories or are referenced by repositories that store configuration information, such as the Windows Registry. An adversary may achieve the same goal by modifying or extending features of the kernel. Since some boot or logon autostart programs run with higher privileges, an adversary may leverage these to elevate privileges.


Name

Abuse Elevation Control Mechanism

ID T1548 Description

Adversaries may circumvent mechanisms designed to control elevate privileges to gain higher-level permissions. Most modern systems contain native elevation control

mechanisms that are intended to limit privileges that a user can perform on a machine. Authorization has to be granted to specific users in order to perform tasks that can be considered of higher risk. An adversary can perform several methods to take advantage of built-in control mechanisms in order to escalate privileges on a system.

mechanisms may be transparent to the user (e.g. [Credential API Hooking](https://attack.mitre.org/techniques/T1056/004)) or rely on deceiving the user into providing input into what they believe to be a genuine service (e.g. [Web Portal Capture](https://attack.mitre.org/techniques/T1056/003)).

Adversaries may interact with the Windows Registry to gather information about the system, configuration, and installed software. The Registry contains a significant amount of information about the operating system, configuration, software, and security.(Citation: Wikipedia Windows Registry) Information can easily be queried using the [Reg](https://attack.mitre.org/software/S0075) utility, though other means to access the Registry exist.

Some of the information may help adversaries to further their operation within a network. Adversaries may use the information from [Query Registry](https://attack.mitre.org/ techniques/T1012) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.

Name Masquerading ID T1036 Description

Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names. Renaming abusable system utilities to evade security monitoring is also a form of [Masquerading](https://attack.mitre.org/techniques/T1036).(Citation: LOLBAS Main Site) Masquerading may also include the use of [Proxy](https://attack.mitre.org/techniques/ T1090) or VPNs to disguise IP addresses, which can allow adversaries to blend in with normal network traffic and bypass conditional access policies or anti-abuse protections.

Name

Exfiltration Over Alternative Protocol

Adversaries may steal data by exfiltrating it over a different protocol than that of the existing command and control channel. The data may also be sent to an alternate network

location from the main command and control server. Alternate protocols include FTP, SMTP, HTTP/S, DNS, SMB, or any other network protocol not being used as the main command and control channel. Adversaries may also opt to encrypt and/or obfuscate these alternate channels. [Exfiltration Over Alternative Protocol](https://attack.mitre.org/techniques/T1048) can be done using various common operating system utilities such as [Net](https://attack.mitre.org/software/S0039)/SMB or FTP.(Citation: Palo Alto OilRig Oct 2016) On macOS and Linux `curl` may be used to invoke protocols such as HTTP/S or FTP/S to exfiltrate data from a system.(Citation: 20 macOS Common Tools and Techniques) Many IaaS and SaaS platforms (such as Microsoft Exchange, Microsoft SharePoint, GitHub, and AWS S3) support the direct download of files, emails, source code, and other sensitive information via the web console or [Cloud API](https://attack.mitre.org/techniques/

Description

An adversary can leverage a computer's peripheral devices (e.g., microphones and webcams) or applications (e.g., voice and video call services) to capture audio recordings for the purpose of listening into sensitive conversations to gather information. Malware or scripts may be used to interact with the devices through an available API provided by the operating system or an application to capture audio. Audio files may be written to disk and exfiltrated later.

Name

Indicator Removal

Description

Adversaries may delete or modify artifacts generated within systems to remove evidence of their presence or hinder defenses. Various artifacts may be created by an adversary or something that can be attributed to an adversary's actions. Typically these artifacts are used as defensive indicators related to monitored events, such as strings from downloaded files, logs that are generated from user actions, and other data analyzed by defenders. Location, format, and type of artifact (such as command or login history) are often specific to each platform. Removal of these indicators may interfere with event collection, reporting, or other processes used to detect intrusion activity. This may compromise the integrity of security solutions by causing notable events to go unreported. This activity may also impede forensic analysis and incident response, due to lack of sufficient data to determine what occurred.

Name

Phishing

T1566

Description

Adversaries may send phishing messages to gain access to victim systems. All forms of phishing are electronically delivered social engineering. Phishing can be targeted, known as spearphishing. In spearphishing, a specific individual, company, or industry will be targeted by the adversary. More generally, adversaries can conduct non-targeted phishing, such as in mass malware spam campaigns. Adversaries may send victims emails containing malicious attachments or links, typically to execute malicious code on victim systems. Phishing may also be conducted via third-party services, like social media platforms. Phishing may also involve social engineering techniques, such as posing as a trusted source, as well as evasive techniques such as removing or manipulating emails or metadata/headers from compromised accounts being abused to send messages (e.g., [Email Hiding Rules](https://attack.mitre.org/techniques/T1564/008)).(Citation: Microsoft OAuth Spam 2022)(Citation: Palo Alto Unit 42 VBA Infostealer 2014) Another way to accomplish this is by forging or spoofing(Citation: Proofpoint-spoof) the identity of the sender which can be used to fool both the human recipient as well as automated security tools.(Citation: cyberproof-double-bounce) Victims may also receive phishing messages that instruct them to call a phone number where they are directed to visit a malicious URL,

download malware,(Citation: sygnia Luna Month)(Citation: CISA Remote Monitoring and Management Software) or install adversary-accessible remote management tools onto their computer (i.e., [User Execution](https://attack.mitre.org/techniques/T1204)).(Citation: Unit42 Luna Moth)

Name

Credentials from Password Stores

ID
T1555
Description
Adversaries may search for common password storage locations to obtain user credentials. Passwords are stored in several places on a system, depending on the operating system or application holding the credentials. There are also specific applications and services that store passwords to make them easier for users to manage

and maintain, such as password managers and cloud secrets vaults. Once credentials are obtained, they can be used to perform lateral movement and access restricted information.

Adversaries may use rootkits to hide the presence of programs, files, network connections, services, drivers, and other system components. Rootkits are programs that hide the existence of malware by intercepting/hooking and modifying operating system API calls that supply system information. (Citation: Symantec Windows Rootkits) Rootkits or rootkit enabling functionality may reside at the user or kernel level in the operating system or

lower, to include a hypervisor, Master Boot Record, or [System Firmware](https:// attack.mitre.org/techniques/T1542/001). (Citation: Wikipedia Rootkit) Rootkits have been seen for Windows, Linux, and Mac OS X systems. (Citation: CrowdStrike Linux Rootkit) (Citation: BlackHat Mac OSX Rootkit)

Adversaries may use a connection proxy to direct network traffic between systems or act as an intermediary for network communications to a command and control server to avoid direct connections to their infrastructure. Many tools exist that enable traffic redirection through proxies or port redirection, including [HTRAN](https://attack.mitre.org/software/ S0040), ZXProxy, and ZXPortMap. (Citation: Trend Micro APT Attack Tools) Adversaries use these types of proxies to manage command and control communications, reduce the number of simultaneous outbound network connections, provide resiliency in the face of connection loss, or to ride over existing trusted communications paths between victims to avoid suspicion. Adversaries may chain together multiple proxies to further disguise the source of malicious traffic. Adversaries can also take advantage of routing schemes in Content Delivery Networks (CDNs) to proxy command and control traffic.

Name			
Softwar	e Discovery		
ID			
T1518			
Descrip	tion		

Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from [Software Discovery](https://attack.mitre.org/techniques/T1518) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to [Exploitation for Privilege Escalation](https://attack.mitre.org/techniques/T1068).

Name	
Impair Defenses	
ID	
T1562	

Description

Adversaries may maliciously modify components of a victim environment in order to hinder or disable defensive mechanisms. This not only involves impairing preventative defenses, such as firewalls and anti-virus, but also detection capabilities that defenders can use to audit activity and identify malicious behavior. This may also span both native defenses as well as supplemental capabilities installed by users and administrators. Adversaries may also impair routine operations that contribute to defensive hygiene, such as blocking users from logging out of a computer or stopping it from being shut down. These restrictions can further enable malicious operations as well as the continued propagation of incidents.(Citation: Emotet shutdown) Adversaries could also target event aggregation and analysis mechanisms, or otherwise disrupt these procedures by altering other system components.

Name

Data Encoding

ID			
T1132			

Description

Adversaries may encode data to make the content of command and control traffic more difficult to detect. Command and control (C2) information can be encoded using a standard data encoding system. Use of data encoding may adhere to existing protocol specifications and includes use of ASCII, Unicode, Base64, MIME, or other binary-to-text and character encoding systems.(Citation: Wikipedia Binary-to-text Encoding) (Citation: Wikipedia Character Encoding) Some data encoding systems may also result in data compression, such as gzip.

Name

System Network Configuration Discovery

ID

T1016

Description

Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include [Arp](https://attack.mitre.org/software/S0099), [ipconfig](https://attack.mitre.org/software/S0100)/[ifconfig](https://attack.mitre.org/ software/S0101), [nbtstat](https://attack.mitre.org/software/S0102), and [route](https:// attack.mitre.org/software/S0103). Adversaries may also leverage a [Network Device CLI] (https://attack.mitre.org/techniques/T1059/008) on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. `show ip route`, `show ip interface`).(Citation: US-CERT-TA18-106A)(Citation: Mandiant APT41 Global Intrusion) Adversaries may use the information from [System Network Configuration Discovery](https://attack.mitre.org/techniques/T1016) during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next.

Name

Data Obfuscation

D

T1001

Description

Adversaries may obfuscate command and control traffic to make it more difficult to detect. Command and control (C2) communications are hidden (but not necessarily encrypted) in an attempt to make the content more difficult to discover or decipher and to make the communication less conspicuous and hide commands from being seen. This encompasses many methods, such as adding junk data to protocol traffic, using steganography, or impersonating legitimate protocols.

Name

Modify Registry

ID

T1112

Description

Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution. Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility [Reg](https://attack.mitre.org/software/S0075) may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API. Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/ or be ignored when read via [Reg](https://attack.mitre.org/software/S0075) or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017) The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often [Valid Accounts](https://attack.mitre.org/techniques/

T1078) are required, along with access to the remote system's [SMB/Windows Admin Shares](https://attack.mitre.org/techniques/T1021/002) for RPC communication.

Name

Native API

ID

T1106

Description

Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes. (Citation: NT API Windows)(Citation: Linux Kernel API) These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations. Adversaries may abuse these OS API functions as a means of executing behaviors. Similar to [Command and Scripting] Interpreter](https://attack.mitre.org/techniques/T1059), the native API and its hierarchy of interfaces provide mechanisms to interact with and utilize various components of a victimized system. Native API functions (such as `NtCreateProcess`) may be directed invoked via system calls / syscalls, but these features are also often exposed to usermode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation: CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the Windows API `CreateProcess()` or GNU `fork()` will allow programs and scripts to start other processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers to execute a binary, run a CLI command, load modules, etc. as thousands of similar API functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC) (Citation: GLIBC) Higher level software frameworks, such as Microsoft .NET and macOS Cocoa, are also available to interact with native APIs. These frameworks typically provide language wrappers/abstractions to API functionalities and are designed for ease-of-use/ portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS Cocoa)(Citation: macOS Foundation) Adversaries may use assembly to directly or indirectly invoke syscalls in an attempt to subvert defensive sensors and detection signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also attempt to tamper with sensors and defensive tools associated with API monitoring, such as unhooking monitored functions via [Disable or Modify Tools](https://attack.mitre.org/ techniques/T1562/001).

Name

Archive Collected Data

ID

T1560

Description

An adversary may compress and/or encrypt data that is collected prior to exfiltration. Compressing the data can help to obfuscate the collected data and minimize the amount of data sent over the network. Encryption can be used to hide information that is being exfiltrated from detection or make exfiltration less conspicuous upon inspection by a defender. Both compression and encryption are done prior to exfiltration, and can be performed using a utility, 3rd party library, or custom method.

Name

Obfuscated Files or Information

ID

T1027

Description

Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https:// attack.mitre.org/techniques/T1204). The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or archived scripts, such as JavaScript. Portions of files can also be encoded to hide the

plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/ Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. (Citation: Carbon Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https:// attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/ T1059). Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Name

Hijack Execution Flow

ID

T1574

Description

Adversaries may execute their own malicious payloads by hijacking the way operating systems run programs. Hijacking execution flow can be for the purposes of persistence, since this hijacked execution may reoccur over time. Adversaries may also use these mechanisms to elevate privileges or evade defenses, such as application control or other restrictions on execution. There are many ways an adversary may hijack the flow of execution, including by manipulating how the operating system locates programs to be executed. How the operating system locates libraries to be used by a program can also be intercepted. Locations where the operating system looks for programs/resources, such as file directories and in the case of Windows the Registry, could also be poisoned to include malicious payloads.

Name

Non-Application Layer Protocol

ID

T1095

Description

Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL). ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.

Name

Access Token Manipulation

ID

T1134

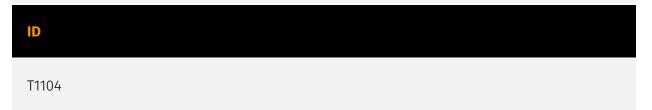
Description

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token. An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. [Token Impersonation/Theft](https://attack.mitre.org/techniques/T1134/001)) or used to spawn a new process (i.e. [Create Process with Token](https://attack.mitre.org/techniques/T1134/002)). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then

use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation) Any standard user can use the `runas` command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.

Name

Description


Indirect Command Execution

ID			
T1202			

Adversaries may abuse utilities that allow for command execution to bypass security restrictions that limit the use of command-line interpreters. Various Windows utilities may be used to execute commands, possibly without invoking [cmd](https://attack.mitre.org/ software/S0106). For example, [Forfiles](https://attack.mitre.org/software/S0193), the Program Compatibility Assistant (pcalua.exe), components of the Windows Subsystem for Linux (WSL), as well as other utilities may invoke the execution of programs and commands from a [Command and Scripting Interpreter](https://attack.mitre.org/ techniques/T1059), Run window, or via scripts. (Citation: VectorSec ForFiles Aug 2017) (Citation: Evi1cg Forfiles Nov 2017) Adversaries may abuse these features for [Defense Evasion](https://attack.mitre.org/tactics/TA0005), specifically to perform arbitrary execution while subverting detections and/or mitigation controls (such as Group Policy) that limit/prevent the usage of [cmd](https://attack.mitre.org/software/S0106) or file extensions more commonly associated with malicious payloads.

Name

Multi-Stage Channels

Description

Adversaries may create multiple stages for command and control that are employed under different conditions or for certain functions. Use of multiple stages may obfuscate the command and control channel to make detection more difficult. Remote access tools will call back to the first-stage command and control server for instructions. The first stage may have automated capabilities to collect basic host information, update tools, and upload additional files. A second remote access tool (RAT) could be uploaded at that point to redirect the host to the second-stage command and control server. The second stage will likely be more fully featured and allow the adversary to interact with the system through a reverse shell and additional RAT features. The different stages will likely be hosted separately with no overlapping infrastructure. The loader may also have backup first-stage callbacks or [Fallback Channels](https://attack.mitre.org/techniques/T1008) in case the original first-stage communication path is discovered and blocked.

Name

Event Triggered Execution

ID

T1546

Description

Adversaries may establish persistence and/or elevate privileges using system mechanisms that trigger execution based on specific events. Various operating systems have means to monitor and subscribe to events such as logons or other user activity such as running specific applications/binaries. Cloud environments may also support various functions and services that monitor and can be invoked in response to specific cloud events. (Citation: Backdooring an AWS account)(Citation: Varonis Power Automate Data Exfiltration) (Citation: Microsoft DART Case Report 001) Adversaries may abuse these mechanisms as a means of maintaining persistent access to a victim via repeatedly executing malicious code. After gaining access to a victim system, adversaries may create/modify event triggers to point to malicious content that will be executed whenever the event trigger is invoked. (Citation: FireEye WMI 2015)(Citation: Malware Persistence on OS X)(Citation: amnesia malware) Since the execution can be proxied by an account with higher permissions, such as SYSTEM or service accounts, an adversary may be able to abuse these triggered execution mechanisms to escalate their privileges.

Name

Command and Scripting Interpreter

ID

T1059

Description

Adversaries may abuse command and script interpreters to execute commands, scripts, or binaries. These interfaces and languages provide ways of interacting with computer systems and are a common feature across many different platforms. Most systems come with some built-in command-line interface and scripting capabilities, for example, macOS and Linux distributions include some flavor of [Unix Shell](https://attack.mitre.org/ techniques/T1059/004) while Windows installations include the [Windows Command Shell] (https://attack.mitre.org/techniques/T1059/003) and [PowerShell](https://attack.mitre.org/ techniques/T1059/001). There are also cross-platform interpreters such as [Python] (https://attack.mitre.org/techniques/T1059/006), as well as those commonly associated with client applications such as [JavaScript](https://attack.mitre.org/techniques/ T1059/007) and [Visual Basic](https://attack.mitre.org/techniques/T1059/005). Adversaries may abuse these technologies in various ways as a means of executing arbitrary commands. Commands and scripts can be embedded in [Initial Access](https:// attack.mitre.org/tactics/TA0001) payloads delivered to victims as lure documents or as secondary payloads downloaded from an existing C2. Adversaries may also execute commands through interactive terminals/shells, as well as utilize various [Remote Services](https://attack.mitre.org/techniques/T1021) in order to achieve remote Execution. (Citation: Powershell Remote Commands)(Citation: Cisco IOS Software Integrity Assurance -Command History)(Citation: Remote Shell Execution in Python)

Name

Supply Chain Compromise

ID T1195

Description

Adversaries may manipulate products or product delivery mechanisms prior to receipt by a final consumer for the purpose of data or system compromise. Supply chain compromise can take place at any stage of the supply chain including: * Manipulation of development tools * Manipulation of a development environment * Manipulation of source code repositories (public or private) * Manipulation of source code in open-source dependencies * Manipulation of software update/distribution mechanisms * Compromised/infected system images (multiple cases of removable media infected at the factory)(Citation: IBM Storwize)(Citation: Schneider Electric USB Malware) * Replacement of legitimate software with modified versions * Sales of modified/counterfeit products to legitimate distributors * Shipment interdiction While supply chain compromise can impact any component of hardware or software, adversaries looking to gain execution have often focused on malicious additions to legitimate software in software distribution or update channels.(Citation: Avast CCleaner3 2018)(Citation: Microsoft Dofoil 2018)(Citation: Command Five SK 2011) Targeting may be specific to a desired victim set or malicious software may be distributed to a broad set of consumers but only move on to additional tactics on specific victims.(Citation: Symantec Elderwood Sept 2012)(Citation: Avast CCleaner3 2018)(Citation: Command Five SK 2011) Popular open source projects that are used as dependencies in many applications may also be targeted as a means to add malicious code to users of the dependency.(Citation: Trendmicro NPM Compromise)

Name

System Owner/User Discovery

ID

T1033

Description

Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using [OS Credential Dumping] (https://attack.mitre.org/techniques/T1003). The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from [System Owner/User Discovery](https://attack.mitre.org/techniques/T1033) during

automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Various utilities and commands may acquire this information, including `whoami`. In macOS and Linux, the currently logged in user can be identified with `w` and `who`. On macOS the `dscl . list /Users | grep -v '_'` command can also be used to enumerate user accounts. Environment variables, such as `%USERNAME%` and `\$USER`, may also be used to access this information. On network devices, [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) commands such as `show users` and `show ssh` can be used to display users currently logged into the device.(Citation: show_ssh_users_cmd_cisco)(Citation: US-CERT TA18-106A Network Infrastructure Devices 2018)

Name

Drive-by Compromise

ID

T1189

Description

Adversaries may gain access to a system through a user visiting a website over the normal course of browsing. With this technique, the user's web browser is typically targeted for exploitation, but adversaries may also use compromised websites for non-exploitation behavior such as acquiring [Application Access Token](https://attack.mitre.org/ techniques/T1550/001). Multiple ways of delivering exploit code to a browser exist (i.e., [Drive-by Target](https://attack.mitre.org/techniques/T1608/004)), including: * A legitimate website is compromised where adversaries have injected some form of malicious code such as JavaScript, iFrames, and cross-site scripting * Script files served to a legitimate website from a publicly writeable cloud storage bucket are modified by an adversary * Malicious ads are paid for and served through legitimate ad providers (i.e., [Malvertising] (https://attack.mitre.org/techniques/T1583/008)) * Built-in web application interfaces are leveraged for the insertion of any other kind of object that can be used to display web content or contain a script that executes on the visiting client (e.g. forum posts, comments, and other user controllable web content). Often the website used by an adversary is one visited by a specific community, such as government, a particular industry, or region, where the goal is to compromise a specific user or set of users based on a shared interest. This kind of targeted campaign is often referred to a strategic web compromise or watering hole attack. There are several known examples of this occurring.(Citation: Shadowserver Strategic Web Compromise) Typical drive-by compromise process: 1. A user visits a website that is used to host the adversary controlled content. 2. Scripts automatically execute,

typically searching versions of the browser and plugins for a potentially vulnerable version. * The user may be required to assist in this process by enabling scripting or active website components and ignoring warning dialog boxes. 3. Upon finding a vulnerable version, exploit code is delivered to the browser. 4. If exploitation is successful, then it will give the adversary code execution on the user's system unless other protections are in place. * In some cases a second visit to the website after the initial scan is required before exploit code is delivered. Unlike [Exploit Public-Facing Application](https:// attack.mitre.org/techniques/T1190), the focus of this technique is to exploit software on a client endpoint upon visiting a website. This will commonly give an adversary access to systems on the internal network instead of external systems that may be in a DMZ. Adversaries may also use compromised websites to deliver a user to a malicious application designed to [Steal Application Access Token](https://attack.mitre.org/techniques/T1528)s, like OAuth tokens, to gain access to protected applications and information. These malicious applications have been delivered through popups on legitimate websites.(Citation: Volexity OceanLotus Nov 2017)

Name

Automated Collection

ID

T1119

Description

Once established within a system or network, an adversary may use automated techniques for collecting internal data. Methods for performing this technique could include use of a [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059) to search for and copy information fitting set criteria such as file type, location, or name at specific time intervals. In cloud-based environments, adversaries may also use cloud APIs, command line interfaces, or extract, transform, and load (ETL) services to automatically collect data. This functionality could also be built into remote access tools. This technique may incorporate use of other techniques such as [File and Directory Discovery](https:// attack.mitre.org/techniques/T1083) and [Lateral Tool Transfer](https://attack.mitre.org/techniques/T1538) and [Cloud Storage Object Discovery](https:// attack.mitre.org/techniques/T1619) to identify resources in cloud environments.

Name

Application Layer Protocol

ID		
T1071		

Description

Adversaries may communicate using OSI application layer protocols to avoid detection/ network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, or DNS. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.

Name

Deobfuscate/Decode Files or Information

ID

T1140

Description

Adversaries may use [Obfuscated Files or Information](https://attack.mitre.org/ techniques/T1027) to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system. One such example is the use of [certutil](https:// attack.mitre.org/software/S0160) to decode a remote access tool portable executable file that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack against Saudi Arabia) Another example is using the Windows `copy /b` command to reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation Sept 2016) Sometimes a user's action may be required to open it for deobfuscation or decryption as part of [User Execution](https://attack.mitre.org/techniques/T1204). The user may also be required to input a password to open a password protected compressed/

encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016)

Name

System Binary Proxy Execution

ID

T1218

Description

Adversaries may bypass process and/or signature-based defenses by proxying execution of malicious content with signed, or otherwise trusted, binaries. Binaries used in this technique are often Microsoft-signed files, indicating that they have been either downloaded from Microsoft or are already native in the operating system.(Citation: LOLBAS Project) Binaries signed with trusted digital certificates can typically execute on Windows systems protected by digital signature validation. Several Microsoft signed binaries that are default on Windows installations can be used to proxy execution of other files or commands. Similarly, on Linux systems adversaries may abuse trusted binaries such as `split` to proxy execution of malicious commands.(Citation: split man page)(Citation: GTFO split)

Name

File and Directory Discovery

D T1083

Description

Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from [File and Directory Discovery](https://attack.mitre.org/techniques/T1083) during automated discovery to shape follow-on behaviors, including whether or not the

adversary fully infects the target and/or attempts specific actions. Many command shell utilities can be used to obtain this information. Examples include `dir`, `tree`, `ls`, `find`, and `locate`.(Citation: Windows Commands JPCERT) Custom tools may also be used to gather file and directory information and interact with the [Native API](https:// attack.mitre.org/techniques/T1106). Adversaries may also leverage a [Network Device CLI] (https://attack.mitre.org/techniques/T1059/008) on network devices to gather file and directory information (e.g. `dir`, `show flash`, and/or `nvram`).(Citation: US-CERT-TA18-106A)

Name Automated Exfiltration ID T1020 Description Adversaries may exfiltrate data, such as sensitive documents, through the use of automated processing after being gathered during Collection. When automated exfiltration is used, other exfiltration techniques likely apply as well to transfer the information out of the network, such as [Exfiltration Over C2 Channel](https://attack.mitre.org/techniques/ T1041) and [Exfiltration Over Alternative Protocol](https://attack.mitre.org/techniques/ T1048). Name Data Staged D T1074 Description Adversaries may stage collected data in a central location or directory prior to Exfiltration.

Adversaries may stage collected data in a central location or directory prior to Exfiltration. Data may be kept in separate files or combined into one file through techniques such as [Archive Collected Data](https://attack.mitre.org/techniques/T1560). Interactive command

shells may be used, and common functionality within [cmd](https://attack.mitre.org/ software/S0106) and bash may be used to copy data into a staging location.(Citation: PWC Cloud Hopper April 2017) In cloud environments, adversaries may stage data within a particular instance or virtual machine before exfiltration. An adversary may [Create Cloud Instance](https://attack.mitre.org/techniques/T1578/002) and stage data in that instance. (Citation: Mandiant M-Trends 2020) Adversaries may choose to stage data from a victim network in a centralized location prior to Exfiltration to minimize the number of connections made to their C2 server and better evade detection.

Name
Screen Capture
ID
T1113
Description
Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as `CopyFromScreen`, `xwd`, or `screencapture`.(Citation: CopyFromScreen .NET)(Citation: Antiquated Mac Malware)
Name
System Information Discovery
ID
T1082
Description
An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries

may use the information from [System Information Discovery](https://attack.mitre.org/ techniques/T1082) during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as [Systeminfo](https://attack.mitre.org/software/S0096) can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the `systemsetup` configuration tool on macOS. As an example, adversaries with user-level access can execute the `df -aH` command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) on network devices to gather detailed system information (e.g. `show version`).(Citation: US-CERT-TA18-106A) [System Information Discovery](https://attack.mitre.org/techniques/T1082) combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.(Citation: OSX.FairyTale)(Citation: 20 macOS Common Tools and Techniques) Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.(Citation: Amazon Describe Instance)(Citation: Google Instances Resource)(Citation: Microsoft Virutal Machine API)

Name

System Network Connections Discovery

ID

T1049

Description

Adversaries may attempt to get a listing of network connections to or from the compromised system they are currently accessing or from remote systems by querying for information over the network. An adversary who gains access to a system that is part of a cloud-based environment may map out Virtual Private Clouds or Virtual Networks in order to determine what systems and services are connected. The actions performed are likely the same types of discovery techniques depending on the operating system, but the resulting information may include details about the networked cloud environment relevant to the adversary's goals. Cloud providers may have different ways in which their virtual networks operate.(Citation: Amazon AWS VPC Guide)(Citation: Microsoft Azure Virtual Network Overview)(Citation: Google VPC Overview) Similarly, adversaries who gain access to network devices may also perform similar discovery activities to gather information about connected systems and services. Utilities and commands that acquire this

information include [netstat](https://attack.mitre.org/software/S0104), "net use," and "net session" with [Net](https://attack.mitre.org/software/S0039). In Mac and Linux, [netstat] (https://attack.mitre.org/software/S0104) and `lsof` can be used to list current connections. `who -a` and `w` can be used to show which users are currently logged in, similar to "net session". Additionally, built-in features native to network devices and [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) may be used (e.g. `show ip sockets`, `show tcp brief`).(Citation: US-CERT-TA18-106A)

Name
Exfiltration Over C2 Channel
ID
T1041
Description
Adversaries may steal data by exfiltrating it over an existing command and control

Adversaries may steal data by exfiltrating it over an existing command and control channel. Stolen data is encoded into the normal communications channel using the same protocol as command and control communications.

Indicator

Name
fa8e6f0094e9adcad61b80c75726bf6c7624c2b10a531f9c0f8a6ffb49b950ba
Description
Created by VirusTotal connector as the positive count was >= 10
Pattern Type
stix
Pattern
[file:hashes.'SHA-256' = 'fa8e6f0094e9adcad61b80c75726bf6c7624c2b10a531f9c0f8a6ffb49b950ba']
Name
180.76.76.11
Description
- **Zip Code:** N/A - **ISP:** Beijing Baidu Netcom Science and Technology Co **ASN:** 38365 - **Organization:** Beijing Baidu Netcom Science and Technology Co **Is

Crawler:** False - **Timezone:** Asia/Shanghai - **Mobile:** False - **Host:** 180.76.76.11 -**Proxy:** True - **VPN:** True - **TOR:** False - **Active VPN:** False - **Active TOR:** False - **Recent Abuse:** False - **Bot Status:** False - **Connection Type:** Premium

required. - **Abuse Velocity:** Premium required. - **Country Code:** CN - **Region:** Beijing - **City:** Beijing - **Latitude:** 39.91 - **Longitude:** 116.4

Pattern Type

stix

Pattern

[ipv4-addr:value = '180.76.76.11']

Name

183.134.93.171

Description

Zip Code: N/A - **ISP:** China Telecom - **ASN:** 58461 - **Organization:** China Telecom - **Is Crawler:** False - **Timezone:** Asia/Shanghai - **Mobile:** False -**Host:** 183.134.93.171 - **Proxy:** False - **VPN:** False - **TOR:** False - **Active VPN:** False - **Active TOR:** False - **Recent Abuse:** False - **Bot Status:** False -**Connection Type:** Premium required. - **Abuse Velocity:** Premium required. -**Country Code:** CN - **Region:** Zhejiang - **City:** Hangzhou - **Latitude:** 30.3 -**Longitude:** 120.16

Pattern Type	Pa
stix	st
Pattern	Pa
[ipv4-addr:value = '183.134.93.171']	[i]
Name	N
180.76.76.76	18

Description

ISP: Beijing Baidu Netcom Science and Technology Co., Ltd. **OS:** None
------ Hostnames: - public-dns-a.baidu.com -----Domains: - baidu.com ------ Services: **53:** ^{***} Recursion: enabled ^{***}
------ **80:** ^{***} HTTP/1.1 403 Forbidden Server: nginx Date: Fri, 29 Dec 2023
23:04:42 GMT Content-Type: text/html Content-Length: 564 Connection: keep-alive ^{***}

Pattern Type

stix

Pattern

[ipv4-addr:value = '180.76.76.76']

Name

aea277eb7cd8383479d1e502d9e3eb76f8d17c4be2dcaa63fda444cac6e96197

Description

Created by VirusTotal connector as the positive count was >= 10

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' = 'aea277eb7cd8383479d1e502d9e3eb76f8d17c4be2dcaa63fda444cac6e96197']

Intrusion-Set

Name

Blackwood

StixFile

Value

fa8e6f0094e9adcad61b80c75726bf6c7624c2b10a531f9c0f8a6ffb49b950ba

aea277eb7cd8383479d1e502d9e3eb76f8d17c4be2dcaa63fda444cac6e96197

IPv4-Addr

Value
183.134.93.171
180.76.76.76
180.76.76.11

External References

• https://otx.alienvault.com/pulse/65b27d24e891d15410da8d3d

• https://www.welivesecurity.com/en/eset-research/nspx30-sophisticated-aitm-enabled-implant-evolving-since-2005/