
NETMANAGEIT

Intelligence Report Quasar RAT's Dual DLL Sideloading Technique

Table of contents

External References

Overview	
Description	3
Confidence	3
• Content Entities	4
Attack-Pattern	5
• Malware	10
External References	

Table of contents

11

Overview

Description

Given the prevalence of sideloading techniques in malware campaigns, it's vital to understand their mechanisms to defend against them effectively. The case of QuasarRAT provides an insightful example.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

15 / 100

3 Overview

Content

N/A

4 Content

Attack-Pattern

Name
Input Capture
ID
T1056
Description
Adversaries may use methods of capturing user input to obtain credentials or collect information. During normal system usage, users often provide credentials to various different locations, such as login pages/portals or system dialog boxes. Input capture mechanisms may be transparent to the user (e.g. [Credential API Hooking](https://attack.mitre.org/techniques/T1056/004)) or rely on deceiving the user into providing input into what they believe to be a genuine service (e.g. [Web Portal Capture](https://attack.mitre.org/techniques/T1056/003)).
Name
Process Injection
ID
T1055
Description

Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process. There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific. More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.

Name

Phishing

ID

T1566

Description

Adversaries may send phishing messages to gain access to victim systems. All forms of phishing are electronically delivered social engineering. Phishing can be targeted, known as spearphishing. In spearphishing, a specific individual, company, or industry will be targeted by the adversary. More generally, adversaries can conduct non-targeted phishing, such as in mass malware spam campaigns. Adversaries may send victims emails containing malicious attachments or links, typically to execute malicious code on victim systems. Phishing may also be conducted via third-party services, like social media platforms. Phishing may also involve social engineering techniques, such as posing as a trusted source, as well as evasive techniques such as removing or manipulating emails or metadata/headers from compromised accounts being abused to send messages (e.g., [Email Hiding Rules](https://attack.mitre.org/techniques/T1564/008)).(Citation: Microsoft OAuth Spam 2022)(Citation: Palo Alto Unit 42 VBA Infostealer 2014) Another way to accomplish this is by forging or spoofing(Citation: Proofpoint-spoof) the identity of the sender which can be used to fool both the human recipient as well as automated security tools.(Citation: cyberproof-double-bounce) Victims may also receive phishing messages that instruct them to call a phone number where they are directed to visit a malicious URL, download malware,(Citation: sygnia Luna Month)(Citation: CISA Remote Monitoring and Management Software) or install adversary-accessible remote management tools onto

their computer (i.e., [User Execution](https://attack.mitre.org/techniques/T1204)).(Citation: Unit42 Luna Moth)

Name

Archive Collected Data

ID

T1560

Description

An adversary may compress and/or encrypt data that is collected prior to exfiltration. Compressing the data can help to obfuscate the collected data and minimize the amount of data sent over the network. Encryption can be used to hide information that is being exfiltrated from detection or make exfiltration less conspicuous upon inspection by a defender. Both compression and encryption are done prior to exfiltration, and can be performed using a utility, 3rd party library, or custom method.

Name

Obfuscated Files or Information

ID

T1027

Description

Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https://attack.mitre.org/techniques/T1204). The user may also be required to input a password to

open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or archived scripts, such as JavaScript. Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. (Citation: Carbon Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https://attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059). Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Name

Hijack Execution Flow

ID

T1574

Description

Adversaries may execute their own malicious payloads by hijacking the way operating systems run programs. Hijacking execution flow can be for the purposes of persistence, since this hijacked execution may reoccur over time. Adversaries may also use these mechanisms to elevate privileges or evade defenses, such as application control or other restrictions on execution. There are many ways an adversary may hijack the flow of execution, including by manipulating how the operating system locates programs to be executed. How the operating system locates libraries to be used by a program can also be intercepted. Locations where the operating system looks for programs/resources, such as file directories and in the case of Windows the Registry, could also be poisoned to include malicious payloads.

Name

Remote Access Software

ID

T1219

Description

An adversary may use legitimate desktop support and remote access software, such as Team Viewer, AnyDesk, Go2Assist, LogMein, AmmyyAdmin, etc, to establish an interactive command and control channel to target systems within networks. These services are commonly used as legitimate technical support software, and may be allowed by application control within a target environment. Remote access tools like VNC, Ammyy, and Teamviewer are used frequently when compared with other legitimate software commonly used by adversaries.(Citation: Symantec Living off the Land) Remote access tools may be installed and used post-compromise as alternate communications channel for redundant access or as a way to establish an interactive remote desktop session with the target system. They may also be used as a component of malware to establish a reverse connection or back-connect to a service or adversary controlled system. Installation of many remote access tools may also include persistence (ex: the tool's installation routine creates a [Windows Service](https://attack.mitre.org/techniques/T1543/003)). Admin tools such as TeamViewer have been used by several groups targeting institutions in countries of interest to the Russian state and criminal campaigns.(Citation: CrowdStrike 2015 Global Threat Report)(Citation: CrySyS Blog TeamSpy)

Malware

Name

QuasarRAT

10 Malware

External References

- https://otx.alienvault.com/pulse/6537f5d1d9876cfc2fd9c89b
- https://www.uptycs.com/blog/quasar-rat

11 External References