
Oct 10 2023

Intelligence Report
Leveraging a Hooking
Framework to Expand
Malware Detection
Coverage on the Android
Platform

 N/A

 N/A

 N/A

 N/A

 info@netmanageit.com

 https://www.netmanageit.com

1

4

4

5

6

13

15

16

Table of contents

Overview

• Description

• Confidence

• Content

Entities

• Attack-Pattern

• Indicator

Observables

• Domain-Name

• StixFile

TLP:CLEAR

2 Table of contents

17

External References

• External References

TLP:CLEAR

3 Table of contents

Overview

Description

One of the biggest challenges we face in analyzing Android application package (APK) samples

at scale is the diversity of Android platform versions that malware authors use. When trying to

utilize static and dynamic analysis techniques in the malware detection space, the sheer variety

of platform versions can feel overwhelming.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

15 / 100

TLP:CLEAR

4 Overview

Content

N/A

TLP:CLEAR

5 Content

Attack-Pattern

Name

OS Credential Dumping

ID

T1003

Description

Adversaries may attempt to dump credentials to obtain account login and credential

material, normally in the form of a hash or a clear text password, from the operating

system and software. Credentials can then be used to perform [Lateral Movement](https://

attack.mitre.org/tactics/TA0008) and access restricted information. Several of the tools

mentioned in associated sub-techniques may be used by both adversaries and

professional security testers. Additional custom tools likely exist as well.

Name

Boot or Logon Autostart Execution

ID

T1547

Description

Adversaries may configure system settings to automatically execute a program during

system boot or logon to maintain persistence or gain higher-level privileges on

TLP:CLEAR

6 Attack-Pattern

compromised systems. Operating systems may have mechanisms for automatically

running a program on system boot or account logon.(Citation: Microsoft Run Key)(Citation:

MSDN Authentication Packages)(Citation: Microsoft TimeProvider)(Citation: Cylance Reg

Persistence Sept 2013)(Citation: Linux Kernel Programming) These mechanisms may

include automatically executing programs that are placed in specially designated

directories or are referenced by repositories that store configuration information, such as

the Windows Registry. An adversary may achieve the same goal by modifying or extending

features of the kernel. Since some boot or logon autostart programs run with higher

privileges, an adversary may leverage these to elevate privileges.

Name

Input Capture

ID

T1056

Description

Adversaries may use methods of capturing user input to obtain credentials or collect

information. During normal system usage, users often provide credentials to various

different locations, such as login pages/portals or system dialog boxes. Input capture

mechanisms may be transparent to the user (e.g. [Credential API Hooking](https://

attack.mitre.org/techniques/T1056/004)) or rely on deceiving the user into providing input

into what they believe to be a genuine service (e.g. [Web Portal Capture](https://

attack.mitre.org/techniques/T1056/003)).

Name

Masquerading

ID

T1036

Description

TLP:CLEAR

7 Attack-Pattern

Adversaries may attempt to manipulate features of their artifacts to make them appear

legitimate or benign to users and/or security tools. Masquerading occurs when the name

or location of an object, legitimate or malicious, is manipulated or abused for the sake of

evading defenses and observation. This may include manipulating file metadata, tricking

users into misidentifying the file type, and giving legitimate task or service names.

Renaming abusable system utilities to evade security monitoring is also a form of

[Masquerading](https://attack.mitre.org/techniques/T1036).(Citation: LOLBAS Main Site)

Name

Encrypted Channel

ID

T1573

Description

Adversaries may employ a known encryption algorithm to conceal command and control

traffic rather than relying on any inherent protections provided by a communication

protocol. Despite the use of a secure algorithm, these implementations may be vulnerable

to reverse engineering if secret keys are encoded and/or generated within malware

samples/configuration files.

Name

Subvert Trust Controls

ID

T1553

Description

Adversaries may undermine security controls that will either warn users of untrusted

activity or prevent execution of untrusted programs. Operating systems and security

products may contain mechanisms to identify programs or websites as possessing some

level of trust. Examples of such features would include a program being allowed to run

TLP:CLEAR

8 Attack-Pattern

because it is signed by a valid code signing certificate, a program prompting the user with

a warning because it has an attribute set from being downloaded from the Internet, or

getting an indication that you are about to connect to an untrusted site. Adversaries may

attempt to subvert these trust mechanisms. The method adversaries use will depend on

the specific mechanism they seek to subvert. Adversaries may conduct [File and Directory

Permissions Modification](https://attack.mitre.org/techniques/T1222) or [Modify Registry]

(https://attack.mitre.org/techniques/T1112) in support of subverting these controls.

(Citation: SpectorOps Subverting Trust Sept 2017) Adversaries may also create or steal code

signing certificates to acquire trust on target systems.(Citation: Securelist Digital

Certificates)(Citation: Symantec Digital Certificates)

Name

Native API

ID

T1106

Description

Adversaries may interact with the native OS application programming interface (API) to

execute behaviors. Native APIs provide a controlled means of calling low-level OS services

within the kernel, such as those involving hardware/devices, memory, and processes.

(Citation: NT API Windows)(Citation: Linux Kernel API) These native APIs are leveraged by

the OS during system boot (when other system components are not yet initialized) as well

as carrying out tasks and requests during routine operations. Native API functions (such as

`NtCreateProcess`) may be directed invoked via system calls / syscalls, but these features

are also often exposed to user-mode applications via interfaces and libraries.(Citation:

OutFlank System Calls)(Citation: CyberBit System Calls)(Citation: MDSec System Calls) For

example, functions such as the Windows API `CreateProcess()` or GNU `fork()` will allow

programs and scripts to start other processes.(Citation: Microsoft CreateProcess)(Citation:

GNU Fork) This may allow API callers to execute a binary, run a CLI command, load

modules, etc. as thousands of similar API functions exist for various system operations.

(Citation: Microsoft Win32)(Citation: LIBC)(Citation: GLIBC) Higher level software

frameworks, such as Microsoft .NET and macOS Cocoa, are also available to interact with

native APIs. These frameworks typically provide language wrappers/abstractions to API

functionalities and are designed for ease-of-use/portability of code.(Citation: Microsoft

NET)(Citation: Apple Core Services)(Citation: MACOS Cocoa)(Citation: macOS Foundation)

Adversaries may abuse these OS API functions as a means of executing behaviors. Similar

to [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059), the

TLP:CLEAR

9 Attack-Pattern

native API and its hierarchy of interfaces provide mechanisms to interact with and utilize

various components of a victimized system. While invoking API functions, adversaries may

also attempt to bypass defensive tools (ex: unhooking monitored functions via [Disable or

Modify Tools](https://attack.mitre.org/techniques/T1562/001)).

Name

Obfuscated Files or Information

ID

T1027

Description

Adversaries may attempt to make an executable or file difficult to discover or analyze by

encrypting, encoding, or otherwise obfuscating its contents on the system or in transit.

This is common behavior that can be used across different platforms and the network to

evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid

detection. These payloads may be used during Initial Access or later to mitigate detection.

Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or

Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https://

attack.mitre.org/techniques/T1204). The user may also be required to input a password to

open a password protected compressed/encrypted file that was provided by the adversary.

(Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or

archived scripts, such as JavaScript. Portions of files can also be encoded to hide the

plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/

Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly

benign files that only reveal malicious functionality when reassembled. (Citation: Carbon

Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https://

attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or

directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/

T1059). Environment variables, aliases, characters, and other platform/language specific

semantics can be used to evade signature based detections and application control

mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-

Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Name

TLP:CLEAR

10 Attack-Pattern

Command and Scripting Interpreter

ID

T1059

Description

Adversaries may abuse command and script interpreters to execute commands, scripts, or

binaries. These interfaces and languages provide ways of interacting with computer

systems and are a common feature across many different platforms. Most systems come

with some built-in command-line interface and scripting capabilities, for example, macOS

and Linux distributions include some flavor of [Unix Shell](https://attack.mitre.org/

techniques/T1059/004) while Windows installations include the [Windows Command Shell]

(https://attack.mitre.org/techniques/T1059/003) and [PowerShell](https://attack.mitre.org/

techniques/T1059/001). There are also cross-platform interpreters such as [Python]

(https://attack.mitre.org/techniques/T1059/006), as well as those commonly associated

with client applications such as [JavaScript](https://attack.mitre.org/techniques/

T1059/007) and [Visual Basic](https://attack.mitre.org/techniques/T1059/005). Adversaries

may abuse these technologies in various ways as a means of executing arbitrary

commands. Commands and scripts can be embedded in [Initial Access](https://

attack.mitre.org/tactics/TA0001) payloads delivered to victims as lure documents or as

secondary payloads downloaded from an existing C2. Adversaries may also execute

commands through interactive terminals/shells, as well as utilize various [Remote

Services](https://attack.mitre.org/techniques/T1021) in order to achieve remote Execution.

(Citation: Powershell Remote Commands)(Citation: Cisco IOS Software Integrity Assurance -

Command History)(Citation: Remote Shell Execution in Python)

Name

Deobfuscate/Decode Files or Information

ID

T1140

Description

TLP:CLEAR

11 Attack-Pattern

Adversaries may use [Obfuscated Files or Information](https://attack.mitre.org/

techniques/T1027) to hide artifacts of an intrusion from analysis. They may require

separate mechanisms to decode or deobfuscate that information depending on how they

intend to use it. Methods for doing that include built-in functionality of malware or by

using utilities present on the system. One such example is the use of [certutil](https://

attack.mitre.org/software/S0160) to decode a remote access tool portable executable file

that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack

against Saudi Arabia) Another example is using the Windows `copy /b` command to

reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation

Sept 2016) Sometimes a user's action may be required to open it for deobfuscation or

decryption as part of [User Execution](https://attack.mitre.org/techniques/T1204). The user

may also be required to input a password to open a password protected compressed/

encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November

2016)

TLP:CLEAR

12 Attack-Pattern

Indicator

Name

madhavaapps.science

Pattern Type

stix

Pattern

[domain-name:value = 'madhavaapps.science']

Name

1249c4d3a4b499dc8a9a2b3591614966145daac808d440e5202335d9a4226ff8

Description

TrojanSpy:AndroidOS/Banker.H!MTB

Pattern Type

stix

Pattern

TLP:CLEAR

13 Indicator

[file:hashes.'SHA-256' =

'1249c4d3a4b499dc8a9a2b3591614966145daac808d440e5202335d9a4226ff8']

Name

73dee5433d560c072ea42b2288f826b16250da6f07543b3e3387ace31a13bd7c

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'73dee5433d560c072ea42b2288f826b16250da6f07543b3e3387ace31a13bd7c']

Name

833d9669dd64a2aa009a3741c8f16612cfafc3104b1f2113ac69255b6fcabf8e

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'833d9669dd64a2aa009a3741c8f16612cfafc3104b1f2113ac69255b6fcabf8e']

TLP:CLEAR

14 Indicator

Domain-Name

Value

madhavaapps.science

TLP:CLEAR

15 Domain-Name

StixFile

Value

1249c4d3a4b499dc8a9a2b3591614966145daac808d440e5202335d9a4226ff8

833d9669dd64a2aa009a3741c8f16612cfafc3104b1f2113ac69255b6fcabf8e

73dee5433d560c072ea42b2288f826b16250da6f07543b3e3387ace31a13bd7c

TLP:CLEAR

16 StixFile

External References

• https://otx.alienvault.com/pulse/65255d648fba50eeceb7a6f8

• https://unit42.paloaltonetworks.com/hooking-framework-in-sandbox-to-analyze-android-

apk/

TLP:CLEAR

17 External References

https://otx.alienvault.com/pulse/65255d648fba50eeceb7a6f8
https://unit42.paloaltonetworks.com/hooking-framework-in-sandbox-to-analyze-android-apk/
https://unit42.paloaltonetworks.com/hooking-framework-in-sandbox-to-analyze-android-apk/

	Intelligence Report
	Table of contents
	Overview
	Entities
	Observables
	External References

	Overview
	Description
	Confidence

	Content
	Attack-Pattern
	Indicator
	Domain-Name
	StixFile
	External References

