

Table of contents

Overview

•	Description	3
•	Confidence	3

Entities

•	Intrusion-Set	4
•	Attack-Pattern	5

External References

• External References

Overview

Description

Emotet is a malware family active since 2014, operated by a cybercrime group known as Mealybug or TA542. Although it started as a banking trojan, it later evolved into a botnet that became one of the most prevalent threats worldwide. Emotet spreads via spam emails; it can exfiltrate information from, and deliver third-party malware to, compromised computers. Emotet operators are not very picky about their targets, installing their malware on systems belonging to individuals as well as companies and bigger organizations.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

15 / 100

Intrusion-Set

Name

Mealybug

Attack-Pattern

Name

Compromise Accounts

ID

T1586

Description

Adversaries may compromise accounts with services that can be used during targeting. For operations incorporating social engineering, the utilization of an online persona may be important. Rather than creating and cultivating accounts (i.e. [Establish Accounts](https:// attack.mitre.org/techniques/T1585)), adversaries may compromise existing accounts. Utilizing an existing persona may engender a level of trust in a potential victim if they have a relationship, or knowledge of, the compromised persona. A variety of methods exist for compromising accounts, such as gathering credentials via [Phishing for Information] (https://attack.mitre.org/techniques/T1598), purchasing credentials from third-party sites, brute forcing credentials (ex: password reuse from breach credential dumps), or paying employees, suppliers or business partners for access to credentials.(Citation: AnonHBGary) (Citation: Microsoft DEV-0537) Prior to compromising accounts, adversaries may conduct Reconnaissance to inform decisions about which accounts to compromise to further their operation. Personas may exist on a single site or across multiple sites (ex: Facebook, LinkedIn, Twitter, Google, etc.). Compromised accounts may require additional development, this could include filling out or modifying profile information, further developing social networks, or incorporating photos. Adversaries may directly leverage compromised email accounts for [Phishing for Information](https://attack.mitre.org/ techniques/T1598) or [Phishing](https://attack.mitre.org/techniques/T1566).

Name

Compromise Infrastructure

ID

T1584

Description

Adversaries may compromise third-party infrastructure that can be used during targeting. Infrastructure solutions include physical or cloud servers, domains, and third-party web and DNS services. Instead of buying, leasing, or renting infrastructure an adversary may compromise infrastructure and use it during other phases of the adversary lifecycle. (Citation: Mandiant APT1)(Citation: ICANNDomainNameHijacking)(Citation: Talos DNSpionage Nov 2018)(Citation: FireEye EPS Awakens Part 2) Additionally, adversaries may compromise numerous machines to form a botnet they can leverage. Use of compromised infrastructure allows adversaries to stage, launch, and execute operations. Compromised infrastructure can help adversary operations blend in with traffic that is seen as normal, such as contact with high reputation or trusted sites. For example, adversaries may leverage compromised infrastructure (potentially also in conjunction with [Digital Certificates](https://attack.mitre.org/techniques/T1588/004)) to further blend in and support staged information gathering and/or [Phishing](https://attack.mitre.org/ techniques/T1566) campaigns.(Citation: FireEye DNS Hijack 2019) Additionally, adversaries may also compromise infrastructure to support [Proxy](https://attack.mitre.org/ techniques/T1090).(Citation: amnesty_nso_pegasus) By using compromised infrastructure, adversaries may make it difficult to tie their actions back to them. Prior to targeting, adversaries may compromise the infrastructure of other adversaries.(Citation: NSA NCSC Turla OilRig)

Name

Gather Victim Identity Information

ID		
T1589		
Description		

Adversaries may gather information about the victim's identity that can be used during targeting. Information about identities may include a variety of details, including personal data (ex: employee names, email addresses, etc.) as well as sensitive details such as credentials. Adversaries may gather this information in various ways, such as direct elicitation via [Phishing for Information](https://attack.mitre.org/techniques/T1598). Information about users could also be enumerated via other active means (i.e. [Active Scanning](https://attack.mitre.org/techniques/T1595)) such as probing and analyzing responses from authentication services that may reveal valid usernames in a system. (Citation: GrimBlog UsernameEnum) Information about victims may also be exposed to adversaries via online or other accessible data sets (ex: [Social Media](https:// attack.mitre.org/techniques/T1593/001) or [Search Victim-Owned Websites](https:// attack.mitre.org/techniques/T1594)).(Citation: OPM Leak)(Citation: Register Deloitte) (Citation: Register Uber)(Citation: Detectify Slack Tokens)(Citation: Forbes GitHub Creds) (Citation: GitHub truffleHog)(Citation: GitHub Gitrob)(Citation: CNET Leaks) Gathering this information may reveal opportunities for other forms of reconnaissance (ex: [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593) or [Phishing for Information](https://attack.mitre.org/techniques/T1598)), establishing operational resources (ex: [Compromise Accounts](https://attack.mitre.org/techniques/T1586)), and/or initial access (ex: [Phishing](https://attack.mitre.org/techniques/T1566) or [Valid Accounts] (https://attack.mitre.org/techniques/T1078)).

Name Develop Capabilities ID T1587 Description

Adversaries may build capabilities that can be used during targeting. Rather than purchasing, freely downloading, or stealing capabilities, adversaries may develop their own capabilities in-house. This is the process of identifying development requirements and building solutions such as malware, exploits, and self-signed certificates. Adversaries may develop capabilities to support their operations throughout numerous phases of the adversary lifecycle.(Citation: Mandiant APT1)(Citation: Kaspersky Sofacy)(Citation: Bitdefender StrongPity June 2020)(Citation: Talos Promethium June 2020) As with legitimate development efforts, different skill sets may be required for developing capabilities. The skills needed may be located in-house, or may need to be contracted out. Use of a

contractor may be considered an extension of that adversary's development capabilities, provided the adversary plays a role in shaping requirements and maintains a degree of exclusivity to the capability.

Name

Obtain Capabilities

ID

T1588

Description

Adversaries may buy and/or steal capabilities that can be used during targeting. Rather than developing their own capabilities in-house, adversaries may purchase, freely download, or steal them. Activities may include the acquisition of malware, software (including licenses), exploits, certificates, and information relating to vulnerabilities. Adversaries may obtain capabilities to support their operations throughout numerous phases of the adversary lifecycle. In addition to downloading free malware, software, and exploits from the internet, adversaries may purchase these capabilities from third-party entities. Third-party entities can include technology companies that specialize in malware and exploits, criminal marketplaces, or from individuals.(Citation: NationsBuying)(Citation: PegasusCitizenLab) In addition to purchasing capabilities, adversaries may steal capabilities from third-party entities (including other adversaries). This can include stealing software licenses, malware, SSL/TLS and code-signing certificates, or raiding closed databases of vulnerabilities or exploits.(Citation: DiginotarCompromise)

Name Email Collection ID T1114 Description

Adversaries may target user email to collect sensitive information. Emails may contain sensitive data, including trade secrets or personal information, that can prove valuable to adversaries. Adversaries can collect or forward email from mail servers or clients.

Name

Gather Victim Host Information

ID

T1592

Description

Adversaries may gather information about the victim's hosts that can be used during targeting. Information about hosts may include a variety of details, including administrative data (ex: name, assigned IP, functionality, etc.) as well as specifics regarding its configuration (ex: operating system, language, etc.). Adversaries may gather this information in various ways, such as direct collection actions via [Active Scanning](https:// attack.mitre.org/techniques/T1595) or [Phishing for Information](https://attack.mitre.org/ techniques/T1598). Adversaries may also compromise sites then include malicious content designed to collect host information from visitors.(Citation: ATT ScanBox) Information about hosts may also be exposed to adversaries via online or other accessible data sets (ex: [Social Media](https://attack.mitre.org/techniques/T1593/001) or [Search Victim-Owned Websites](https://attack.mitre.org/techniques/T1594)). Gathering this information may reveal opportunities for other forms of reconnaissance (ex: [Search Open Websites/ Domains](https://attack.mitre.org/techniques/T1593) or [Search Open Technical Databases](https://attack.mitre.org/techniques/T1596)), establishing operational resources (ex: [Develop Capabilities](https://attack.mitre.org/techniques/T1587) or [Obtain Capabilities](https://attack.mitre.org/techniques/T1588)), and/or initial access (ex: [Supply Chain Compromise](https://attack.mitre.org/techniques/T1195) or [External Remote Services](https://attack.mitre.org/techniques/T1133)).

Name

Non-Standard Port

ID

T1571

Description

Adversaries may communicate using a protocol and port pairing that are typically not associated. For example, HTTPS over port 8088(Citation: Symantec Elfin Mar 2019) or port 587(Citation: Fortinet Agent Tesla April 2018) as opposed to the traditional port 443. Adversaries may make changes to the standard port used by a protocol to bypass filtering or muddle analysis/parsing of network data. Adversaries may also make changes to victim systems to abuse non-standard ports. For example, Registry keys and other configuration settings can be used to modify protocol and port pairings.(Citation: change_rdp_port_conti)

Name

Credentials from Password Stores

ID

T1555

Description

Adversaries may search for common password storage locations to obtain user credentials. Passwords are stored in several places on a system, depending on the operating system or application holding the credentials. There are also specific applications that store passwords to make it easier for users manage and maintain. Once credentials are obtained, they can be used to perform lateral movement and access restricted information.

Name

Encrypted Channel

Description

Adversaries may employ a known encryption algorithm to conceal command and control traffic rather than relying on any inherent protections provided by a communication protocol. Despite the use of a secure algorithm, these implementations may be vulnerable to reverse engineering if secret keys are encoded and/or generated within malware samples/configuration files.

Name	
Phishing	
ID	
T1566	

Description

Adversaries may send phishing messages to gain access to victim systems. All forms of phishing are electronically delivered social engineering. Phishing can be targeted, known as spearphishing. In spearphishing, a specific individual, company, or industry will be targeted by the adversary. More generally, adversaries can conduct non-targeted phishing, such as in mass malware spam campaigns. Adversaries may send victims emails containing malicious attachments or links, typically to execute malicious code on victim systems. Phishing may also be conducted via third-party services, like social media platforms. Phishing may also involve social engineering techniques, such as posing as a trusted source, as well as evasive techniques such as removing or manipulating emails or metadata/headers from compromised accounts being abused to send messages (e.g., [Email Hiding Rules](https://attack.mitre.org/techniques/T1564/008)).(Citation: Microsoft OAuth Spam 2022)(Citation: Palo Alto Unit 42 VBA Infostealer 2014) Another way to accomplish this is by forging or spoofing(Citation: Proofpoint-spoof) the identity of the sender which can be used to fool both the human recipient as well as automated security tools.(Citation: cyberproof-double-bounce) Victims may also receive phishing messages that instruct them to call a phone number where they are directed to visit a malicious URL, download malware,(Citation: sygnia Luna Month)(Citation: CISA Remote Monitoring and Management Software) or install adversary-accessible remote management tools onto their computer (i.e., [User Execution](https://attack.mitre.org/techniques/T1204)).(Citation: Unit42 Luna Moth)

Name

User Execution

ID

T1204

Description

An adversary may rely upon specific actions by a user in order to gain execution. Users may be subjected to social engineering to get them to execute malicious code by, for example, opening a malicious document file or link. These user actions will typically be observed as follow-on behavior from forms of [Phishing](https://attack.mitre.org/ techniques/T1566). While [User Execution](https://attack.mitre.org/techniques/T1204) frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user's desktop hoping that a user will click on it. This activity may also be seen shortly after [Internal Spearphishing](https://attack.mitre.org/techniques/T1534). Adversaries may also deceive users into performing actions such as enabling [Remote Access Software](https:// attack.mitre.org/techniques/T1219), allowing direct control of the system to the adversary, or downloading and executing malware for [User Execution](https://attack.mitre.org/ techniques/T1204). For example, tech support scams can be facilitated through [Phishing] (https://attack.mitre.org/techniques/T1566), vishing, or various forms of user interaction. Adversaries can use a combination of these methods, such as spoofing and promoting toll-free numbers or call centers that are used to direct victims to malicious websites, to deliver and execute payloads containing malware or [Remote Access Software](https:// attack.mitre.org/techniques/T1219).(Citation: Telephone Attack Delivery)

Name

D

Obfuscated Files or Information

T1027

Description

Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user's action may be required to open and [Deobfuscate/Decode Files or Information](https://attack.mitre.org/techniques/T1140) for [User Execution](https:// attack.mitre.org/techniques/T1204). The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or archived scripts, such as JavaScript. Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/ Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. (Citation: Carbon Black Obfuscation Sept 2016) Adversaries may also abuse [Command Obfuscation](https:// attack.mitre.org/techniques/T1027/010) to obscure commands executed from payloads or directly via [Command and Scripting Interpreter](https://attack.mitre.org/techniques/ T1059). Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)

Name

Command and Scripting Interpreter

ID

T1059

Description

Adversaries may abuse command and script interpreters to execute commands, scripts, or binaries. These interfaces and languages provide ways of interacting with computer systems and are a common feature across many different platforms. Most systems come with some built-in command-line interface and scripting capabilities, for example, macOS and Linux distributions include some flavor of [Unix Shell](https://attack.mitre.org/ techniques/T1059/004) while Windows installations include the [Windows Command Shell] (https://attack.mitre.org/techniques/T1059/003) and [PowerShell](https://attack.mitre.org/ techniques/T1059/001). There are also cross-platform interpreters such as [Python]

(https://attack.mitre.org/techniques/T1059/006), as well as those commonly associated with client applications such as [JavaScript](https://attack.mitre.org/techniques/ T1059/007) and [Visual Basic](https://attack.mitre.org/techniques/T1059/005). Adversaries may abuse these technologies in various ways as a means of executing arbitrary commands. Commands and scripts can be embedded in [Initial Access](https:// attack.mitre.org/tactics/TA0001) payloads delivered to victims as lure documents or as secondary payloads downloaded from an existing C2. Adversaries may also execute commands through interactive terminals/shells, as well as utilize various [Remote Services](https://attack.mitre.org/techniques/T1021) in order to achieve remote Execution. (Citation: Powershell Remote Commands)(Citation: Cisco IOS Software Integrity Assurance - Command History)(Citation: Remote Shell Execution in Python)

Name

Application Layer Protocol

ID

T1071

Description

Adversaries may communicate using OSI application layer protocols to avoid detection/ network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, or DNS. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.

Name

Deobfuscate/Decode Files or Information

T1140

ID

Description

Adversaries may use [Obfuscated Files or Information](https://attack.mitre.org/ techniques/T1027) to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system. One such example is the use of [certutil](https:// attack.mitre.org/software/S0160) to decode a remote access tool portable executable file that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack against Saudi Arabia) Another example is using the Windows `copy /b` command to reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation Sept 2016) Sometimes a user's action may be required to open it for deobfuscation or decryption as part of [User Execution](https://attack.mitre.org/techniques/T1204). The user may also be required to input a password to open a password protected compressed/ encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016)

External References

- https://otx.alienvault.com/pulse/64a82bceaf3b8ce26d0c7660
- https://www.welivesecurity.com/2023/07/06/whats-up-with-emotet/