
Jul 31 2023

Intelligence Report
MAR-10454006-r2.v1
SEASPY Backdoor

 N/A

 N/A

 N/A

 N/A

 info@netmanageit.com

 https://www.netmanageit.com

1

3

3

4

7

10

11

Table of contents

Overview

• Description

• Confidence

Entities

• Indicator

• Attack-Pattern

Observables

• StixFile

External References

• External References

TLP:CLEAR

2 Table of contents

Overview

Description

CISA obtained two SEASPY malware samples. The malware was used by threat actors exploiting

CVE-2023-2868, a former zero-day vulnerability affecting versions 5.1.3.001-9.2.0.006 of Barracuda

Email Security Gateway (ESG). SEASPY is a persistent and passive backdoor that masquerades as

a legitimate Barracuda service “BarracudaMailService” that allows the threat actors to execute

arbitrary commands on the ESG appliance.

Confidence

This value represents the confidence in the correctness of the data contained within this report.

15 / 100

TLP:CLEAR

3 Overview

Indicator

Name

69935a1ce0240edf42dbe24535577140601bcf3226fa01e4481682f6de22d192

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'69935a1ce0240edf42dbe24535577140601bcf3226fa01e4481682f6de22d192']

Name

10efa7fe69e43c189033006010611e84394569571c4f08ea1735073d6433be81

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'10efa7fe69e43c189033006010611e84394569571c4f08ea1735073d6433be81']

Name

TLP:CLEAR

4 Indicator

9dc9b25a212a0178f6f3d7789f8be10f57bca164

Pattern Type

yara

Pattern

rule CISA_10452108_01 : SEASPY backdoor communicates_with_c2

installs_other_components { meta: Author = "CISA Code & Media Analysis" Incident =

"10452108" Date = "2023-06-20" Last_Modified = "20230628_1000" Actor = "n/a" Family =

"SEASPY" Capabilities = "communicates-with-c2 installs-other-components" Malware_Type

= "backdoor" Tool_Type = "unknown" Description = "Detects malicious Linux SEASPY

samples" SHA256_1 =

"3f26a13f023ad0dcd7f2aa4e7771bba74910ee227b4b36ff72edc5f07336f115" SHA256_2 =

"69935a1ce0240edf42dbe24535577140601bcf3226fa01e4481682f6de22d192" SHA256_3 =

"5f5b8cc4d297c8d46a26732ae47c6ac80338b7be97a078a8e1b6eefd1120a5e5" SHA256_4 =

"10efa7fe69e43c189033006010611e84394569571c4f08ea1735073d6433be81" strings: $s0 = { 2e

2f 42 61 72 72 61 63 75 64 61 4d 61 69 6c 53 65 72 76 69 63 65 20 65 74 68 30 } $s1 = { 75 73 61

67 65 3a 20 2e 2f 42 61 72 72 61 63 75 64 61 4d 61 69 6C 53 65 72 76 69 63 65 20 3c 4e 65 74 77

6f 72 6b 2d 49 6e 74 65 72 66 61 63 65 } $s2 = { 65 6e 74 65 72 20 6f 70 65 6e 20 74 74 79 20 73

68 65 6c 6c } $s3 = { 25 64 00 4e 4f 20 70 6f 72 74 20 63 6f 64 65 } $s4 = { 70 63 61 70 5f 6c 6f

6f 6b 75 70 6e 65 74 3a 20 25 73 } $s5 = { 43 68 69 6c 64 20 70 72 6f 63 65 73 73 20 69 64 3a 25

64 } $s6 = { 5b 2a 5d 53 75 63 63 65 73 73 21 } $a7 = { bf 90 47 90 ec 18 fe e3 83 e2 a9 f7 8d 85

18 1d } $a8 = { 81 35 1e f0 94 ab 2a ba 5d f0 37 76 69 19 9f 1e } $a9 = { 6a 8e c7 89 ce c1 fe 64

78 a6 e1 c5 fe 03 d1 a7 } $a10 = { c2 ff d1 0d 24 23 ec c0 57 f9 8d 4b 05 34 41 b8 } condition:

uint32(0) == 0x464c457f and (all of ($s*)) or (all of ($a*)) }

Name

5f5b8cc4d297c8d46a26732ae47c6ac80338b7be97a078a8e1b6eefd1120a5e5

Pattern Type

stix

Pattern

TLP:CLEAR

5 Indicator

[file:hashes.'SHA-256' =

'5f5b8cc4d297c8d46a26732ae47c6ac80338b7be97a078a8e1b6eefd1120a5e5']

Name

3e21e547cf94cb07c010fe82d6965e5bd52dbdd9255b4dd164f64addfaa87abb

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'3e21e547cf94cb07c010fe82d6965e5bd52dbdd9255b4dd164f64addfaa87abb']

Name

3f26a13f023ad0dcd7f2aa4e7771bba74910ee227b4b36ff72edc5f07336f115

Description

stack_string

Pattern Type

stix

Pattern

[file:hashes.'SHA-256' =

'3f26a13f023ad0dcd7f2aa4e7771bba74910ee227b4b36ff72edc5f07336f115']

TLP:CLEAR

6 Indicator

Attack-Pattern

Name

Native API

ID

T1106

Description

Adversaries may interact with the native OS application programming interface (API) to

execute behaviors. Native APIs provide a controlled means of calling low-level OS services

within the kernel, such as those involving hardware/devices, memory, and processes.

(Citation: NT API Windows)(Citation: Linux Kernel API) These native APIs are leveraged by

the OS during system boot (when other system components are not yet initialized) as well

as carrying out tasks and requests during routine operations. Native API functions (such as

`NtCreateProcess`) may be directed invoked via system calls / syscalls, but these features

are also often exposed to user-mode applications via interfaces and libraries.(Citation:

OutFlank System Calls)(Citation: CyberBit System Calls)(Citation: MDSec System Calls) For

example, functions such as the Windows API `CreateProcess()` or GNU `fork()` will allow

programs and scripts to start other processes.(Citation: Microsoft CreateProcess)(Citation:

GNU Fork) This may allow API callers to execute a binary, run a CLI command, load

modules, etc. as thousands of similar API functions exist for various system operations.

(Citation: Microsoft Win32)(Citation: LIBC)(Citation: GLIBC) Higher level software

frameworks, such as Microsoft .NET and macOS Cocoa, are also available to interact with

native APIs. These frameworks typically provide language wrappers/abstractions to API

functionalities and are designed for ease-of-use/portability of code.(Citation: Microsoft

NET)(Citation: Apple Core Services)(Citation: MACOS Cocoa)(Citation: macOS Foundation)

Adversaries may abuse these OS API functions as a means of executing behaviors. Similar

to [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059), the

native API and its hierarchy of interfaces provide mechanisms to interact with and utilize

TLP:CLEAR

7 Attack-Pattern

various components of a victimized system. While invoking API functions, adversaries may

also attempt to bypass defensive tools (ex: unhooking monitored functions via [Disable or

Modify Tools](https://attack.mitre.org/techniques/T1562/001)).

Name

Command and Scripting Interpreter

ID

T1059

Description

Adversaries may abuse command and script interpreters to execute commands, scripts, or

binaries. These interfaces and languages provide ways of interacting with computer

systems and are a common feature across many different platforms. Most systems come

with some built-in command-line interface and scripting capabilities, for example, macOS

and Linux distributions include some flavor of [Unix Shell](https://attack.mitre.org/

techniques/T1059/004) while Windows installations include the [Windows Command Shell]

(https://attack.mitre.org/techniques/T1059/003) and [PowerShell](https://attack.mitre.org/

techniques/T1059/001). There are also cross-platform interpreters such as [Python]

(https://attack.mitre.org/techniques/T1059/006), as well as those commonly associated

with client applications such as [JavaScript](https://attack.mitre.org/techniques/

T1059/007) and [Visual Basic](https://attack.mitre.org/techniques/T1059/005). Adversaries

may abuse these technologies in various ways as a means of executing arbitrary

commands. Commands and scripts can be embedded in [Initial Access](https://

attack.mitre.org/tactics/TA0001) payloads delivered to victims as lure documents or as

secondary payloads downloaded from an existing C2. Adversaries may also execute

commands through interactive terminals/shells, as well as utilize various [Remote

Services](https://attack.mitre.org/techniques/T1021) in order to achieve remote Execution.

(Citation: Powershell Remote Commands)(Citation: Cisco IOS Software Integrity Assurance -

Command History)(Citation: Remote Shell Execution in Python)

Name

Application Layer Protocol

ID

TLP:CLEAR

8 Attack-Pattern

T1071

Description

Adversaries may communicate using OSI application layer protocols to avoid detection/

network filtering by blending in with existing traffic. Commands to the remote system, and

often the results of those commands, will be embedded within the protocol traffic

between the client and server. Adversaries may utilize many different protocols, including

those used for web browsing, transferring files, electronic mail, or DNS. For connections

that occur internally within an enclave (such as those between a proxy or pivot node and

other nodes), commonly used protocols are SMB, SSH, or RDP.

TLP:CLEAR

9 Attack-Pattern

StixFile

Value

69935a1ce0240edf42dbe24535577140601bcf3226fa01e4481682f6de22d192

3f26a13f023ad0dcd7f2aa4e7771bba74910ee227b4b36ff72edc5f07336f115

5f5b8cc4d297c8d46a26732ae47c6ac80338b7be97a078a8e1b6eefd1120a5e5

10efa7fe69e43c189033006010611e84394569571c4f08ea1735073d6433be81

3e21e547cf94cb07c010fe82d6965e5bd52dbdd9255b4dd164f64addfaa87abb

TLP:CLEAR

10 StixFile

External References

• https://otx.alienvault.com/pulse/64c7f1803ca549d1ff8cb8a0

• https://www.cisa.gov/news-events/analysis-reports/ar23-209b

TLP:CLEAR

11 External References

https://otx.alienvault.com/pulse/64c7f1803ca549d1ff8cb8a0
https://www.cisa.gov/news-events/analysis-reports/ar23-209b

	Intelligence Report
	Table of contents
	Overview
	Entities
	Observables
	External References

	Overview
	Description
	Confidence

	Indicator
	Attack-Pattern
	StixFile
	External References

